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Abstract

Consider the motion of a charged, point particle moving in the complement of a Poisson
distribution of hard sphere scatterers in two dimensions under the effect of a fixed magnetic
field. Building on, and extending a coupling method established by the authors, [9], we
show that this ’magnetic Lorentz gas’ satisfies an invariance principle in an intermediate
scaling limit. That is, we apply the low-density (Boltzmann-Grad) limit and simultaneously
take the limit as time goes to infinity, then prove convergence of the rescaled trajectory to
a Brownian motion in this limit.
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1 Introduction

We study the long time behavior of the random, magnetic Lorentz gas in two dimensions. That
is, let P be a Poisson point process in R2 of intensity % > 0. Now place a spherical scatterer of
radius ε > 0 and infinite mass, centered at each point in P and fix a constant magnetic field of
intensity B perpendicular to the plane. With that, we consider the motion of a charged, point
particle moving with unit speed in the complement of the scatterer set and colliding elastically
with the fixed scatterers. We call this the magnetic Lorentz process (abbreviated MLP). We
illustrate some sample trajectories for this model in Figure 1.

This model presents a simple, yet highly non-trivial example of particle dynamics and has
been very well studied. For instance, in a recent paper, [11] it is proved, using methods in-
spired by [6], that in the low density, or Boltzmann-Grad limit, and annealed setting, the MLP
converges in distribution, in any compact microscopic time interval, to the limiting process
corresponding to the linear magnetic Boltzmann equation derived and analysed in [1, 2, 3, 8].

The limiting velocity process (described in detail in section 2.2) is essentially Markovian and
sufficiently fast mixing. Thus, it easily follows that if we subsequently apply a diffusive limit we
obtain the invariance principle for this limit process. However, we stress that this drops out by
first taking a kinetic limit, and then applying a diffusive limit.

In the present paper, we present an alternative, purely probabilistic approach to studying
this model. This approach is in the spirit of our earlier papers [9, 10] where the scaling limit
of the Lorentz gas in d ≥ 3 and, respectively, of the Ehrenfest wind-tree model in d ≥ 2 were

1



(a)

(b)

Figure 1: Here we give two examples of the magnetic Lorentz gas travelling
through the same array of scatterers. Collision (a) is an example of a
recollision with the ’current scatterer’, while collision (b) is an example
of a recollision with a ’past scatterer’.

studied. Not only does our approach recover the result of [11] for finite microscopic times, it
allows us to consider the joint kinetic and diffusive limit for time-scales going to infinity. That
is, we consider the displacement of the MLP in the limit as we apply Boltzmann-Grad scaling,
and simultaneously diffusive time scaling. For an explicit formulation see Theorem 1.

The rest of the paper is structured as follows. In section 2 we formally define the processes
involved: the physical MLP, the low-density (Boltzmann-Grad) limit process, and an auxiliary
’Markovized’ version of the MLP. We also state our main result and outline our proof in this
section. The proof is given in section 3, partitioned into three subsections. Section ?? is an
Appendix in which we collected ingredients pertaining to our random walk and Green’s functions.

2 The processes

2.1 The magnetic Lorentz process

First we formally define the physical MLP, and then state the main result of this paper. Given
a Poisson point process P of intensity % > 0, magnetic field of intensity B > 0 perpendicular to
the plane, radius ε > 0, and initial velocity U0 ∈ S1 on the unit circle, we denote the position at
time t > 0 of a magnetic Lorentz process starting at the origin: Xε,%(t) ∈ R2. We will always
assume that the starting point is in the complement of the area covered by scatterers. The
process Xε,% moves in anti-clockwise circular orbits of radius: RL := 1

B , the ’Larmor radius’
(assuming the mass and charge of the particle are unit). For the sake of simplicity we assume
B = 1.

The following scenarios of trajectory could occur with positive probability. For a detailed
analysis of the various trapping scenarios see [8].

(A) The starting point is fully surrounded by a connected cluster of partially overlapping scat-
terers and thus the trajectory is trapped in a compact domain. Due to a simple percolation
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A B C D

Figure 2: The four possible scenarios for the magnetic Lorentz gas are shown here
as described above.

argument this event will happen with probability θ1(%ε2), where the percolation function
θ1 : R+ → R+ is nondecreasing, and limu→0 θ1(u) = 0.

(B) The trajectory of the charged particle goes around on a full Larmor orbit without encoun-
tering a scatterer, and thus it is again trapped in a compact domain. This event happens
with probability e−4π%ε (if ε ≤ 1).

(C) The trajectory of the charged particle encounters a finite positive number of scatterers,
and densely fills the union of discs of radii 2 + ε centered at these finitely many scatterers,
which in this case must be a connected compact set of the plain. The probability of
this event is bounded from above by θ2(%) where θ2 : R+ → R+ is nonincreasing, and
limu→∞ θ2(u) = 0.

(D) None of the previous trapping scenarios occur and thus, the trajectory evolves unbound-
edly.

We will denote by A, B, C, and D the events described above verbally. Examples of the various
scenarios are shown in Fig. 2.

A major open problem in this context is to understand the long time diffusive behaviour
of the trajectory of the charged particle in the above setting. Assume that the parameters ε
and % are chosen so that the probability of scenario (D) is positive. The Holy Grail would be
to prove the Invariance Principle (a.k.a. functional Central Limit Theorem) for the diffusively
scaled trajectory

Xε,%(tT )√
T

as T →∞, (1)

conditionally on the event D. With our present knowledge and technical methods, this goal is,
unfortunately, beyond reach.

The setting of the cited works and of the present note is the Boltzmann-Grad (low density)
limit:

%→∞, ε→ 0, %ε→ 2. (2)

In this limit, the mean free flight time will have length 1, and the probabilities of the above
listed scenarios converge as follows

P (A)→ 0, P (B)→ e−8π, P (C)→ 0, P (D)→ 1− e−8π. (3)
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Thus, in this limit there are two scenarios left: the trajectory either moves indefinitely on a
circular Larmor trajectory, or, if it experiences one collision with a scatterer then it will collide
with infinitely many distinct scatterers.

Our main result is

Theorem 1. Let T (ε) be such that limε→0 T (ε) = ∞, limε→0 ε |log ε|T (ε) = 0. Then, under
the Boltzmann-Grad limit (2),{

t 7→ T (ε)−1/2X%,ε(T (ε)t)
}
⇒
{
t 7→ αW (t)

}
(4)

where⇒ denotes weak convergence of trajectories in C([0, 1]→ R2), and, on the right hand side,
α is a Bernoulli random variable with distribution P (α = 0) = e−8π = 1−P (α = σ), σ > 0 is
a finite positive constant, and t 7→W (t) is a standard Wiener process on R2, independent of the
random variable α.

The result of the recent paper [11] is to show that under the Boltzmann-Grad limit (2),{
t 7→ X%,ε(t)

}
⇒
{
t 7→ Y (t)

}
(5)

where ⇒ denotes weak convergence of trajectories in C([0, T ]→ R2) on any fixed compact time
interval [0, T ] and t 7→ Y (t) is the process explicitly constructed in section 2.2.

Since the limit process t 7→ Y (t) is constructed in a simple transparent way as an additive
functional of a Markov chain with strong mixing properties – see section 2.2 – from well es-
tablished martingale approximation methods (see e.g. [7]) it follows, that, in a second diffusive
limit, we get {

t 7→ T−1/2Y (Tt)
}
⇒
{
t 7→ αW (t)

}
, as T →∞, (6)

where ⇒ denotes weak convergence of trajectories in C([0, 1] → R2). However we stress again
that this drops out of taking a subsequent diffusive limit, not from applying the limits simulta-
neously as we do in Theorem 1.
Remark: In Theorem 1 and in (5), the limit is meant in the annealed setting. That is, the
convergence in distribution is with respect to the Poisson distribution of the scatterers and the
initial velocity. The methods employed in [11] and in this note are not suited for handling the
quenched setting.

Outline of the proof of Theorem 1

From now on we fix % = 2ε−1 and simplify our notation to Xε,%(t) =: Xε(t).
The proof will follow the outline of what we called "naive coupling" in [9]. There are,

however, some significant differences in the details which we will emphasize on the way. We
stress that we do not go beyond the "naive coupling" since anyway the more sophisticated
coupling of [9] yields an improved result (longer time scale of the validity of the invariance
principle) only in d ≥ 3.

For ε > 0, we will define in section 2.3 a so-called Markovized version t 7→ Y ε(t) of the MLP.
This process is defined similarly to the physical MLP, t 7→ Xε(t), except that after colliding with
a fresh scatterer, the Markovized process forgets the previous scatterers. Therefore, in Figure 1
the recollisions with the ’current scatterer’ (e.g scattering (a)) are observed, while recollisions
with ’past scatterers’ (scattering (b)) are ignored. Likewise, fresh scatterers may be encountered
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in domains where for the physical process the existence of a past scatterer is forbidden (we call
these shadowed scatterings). For a formally precise construction of the Markovized process see
section 2.3.

Since the Markovized process t 7→ Y ε(t) is constructed in a simple transparent way as an
additive functional of a Markov chain with strong mixing properties, uniformly in ε > 0 (see
section 2.3), from well established martingale approximation methods (see e.g. [7]) the following
invariance principle holds: For any sequence T (ε)→∞{

t 7→ T (ε)−1/2Y ε(T (ε)t)
}
⇒
{
t 7→ αW (t)

}
, as T →∞, (7)

where ⇒, α and W (t) are as in Theorem 1.
It remains to prove that the processes t 7→ Xε(t) and t 7→ Y ε(t) can be realized jointly

(i.e. coupled) so that they stay equal with high probability, up to times of order T (ε) =
o((ε |log ε|)−1). This is the content of Theorem 2 below, which is the main technical result of
this note.

2.2 The limit process

In this section we construct explicitly the limit process t 7→ Y (t) which appears in the low
density (Boltzmann-Grad) kinetic limit (5). We stress that there is no novelty here: the process
had been introduced and analysed in [1, 2, 3, 8]. However, our presentation may be more
transparent from a probabilistic point of view.

We will denote by

t 7→ U(t) ∈ S1, t 7→ Y (t) :=

∫ t

0
U(s) ds

the limiting velocity and position process. It will be convenient to use complex coordinates. We
construct a piecewise linear, continuous from the left process

t 7→ ϕ(t) ∈ R/(2π),

such that

U(t) = eiϕ(t), Y (t) =

∫ t

0
eiϕ(s) ds. (8)

The ingredients of the construction are the following random variables, all fully independent
between them.

ϕ0 ∼ UNI[0, 2π],
d

dx
P (ϕ0 < x) =

1

2π
11(0 ≤ x ≤ 2π),

ξj ∼ EXP(1),
d

dx
P (ξj < x) = e−x11(0 ≤ x <∞), 1 ≤ j <∞,

αj ∼ 2 arccos(UNI[−1, 1]),
d

dx
P (αj < x) =

1

4
sin(

x

2
)11(0 ≤ x < 2π), 1 ≤ j <∞.

We also define

νj := bξj/(2π)c, ζj := ξj − 2πνj .
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Hence, νj and ζj are independent and distributed as

νj ∼ GEOM(e−2π), P (νj = n) = e−2πn(1− e−2π)11(n ≥ 0) 1 ≤ j <∞,

ζj ∼ TRUNCEXP(1, 2π),
d

dx
P (ζj < x) =

e−x

1− e−2π
11(0 ≤ x ≤ 2π), 0 ≤ j <∞.

It is convenient to start at time 0 with a fresh scattering. The construction will be done piece-
wise, in the intervals defined by the renewal times ((τn,k)0≤k≤νn+1)0≤n<∞, as follows.

τn :=
n−1∑
j=0

ξj , τn,k :=


τn + 2πk for 0 ≤ k ≤ νn,
τn+1 for k = νn + 1,

not defined for k > νn + 1,

0 ≤ n <∞. (9)

The times (τn)n≥1 will be the times of collisions with fresh scatterers not yet seen in the past.
While the times (τn,k)1≤k≤νn will be the times of recollisions with the scatterer first seen at τn.
The process t 7→ ϕ(t) ∈ R/(2π) will be piece-wise linear, continuous from the left, with jump
discontinuities at the scattering times ((τn,k)0≤k≤νn)0≤n<∞. For 0 ≤ n <∞, let

ϕn+1 := ϕn + (νn+1 + 1)αn+1 + ζn+1,

ϕ+
n,k := ϕn + (k + 1)αn+1

0 ≤ k ≤ νn+1. (10)

Then, for t ∈ (τn,k, τn,k+1], with 0 ≤ n <∞, 0 ≤ k ≤ νn+1,

ϕ(t) := ϕ+
n,k + (t− τn,k)

Given this, the velocity and position processes are defined by (8).
Since we are interested in the diffusive scaling limit N−1/2Y (Nt), noting that

max
τn−1≤t≤τn+1

|Y (t)− Y (τn)| ≤ 2,

from now on we will follow only the discrete time processes

ϕn := ϕ(τn), Un := U(τn) = eiϕn , Yn := Y (τn), yn := Yn − Yn−1.

We show that the successive steps yn are a rather explicit function of a rather explicit and
well-behaved Markov chain.

Using (8) and (10) we readily obtain

yn = 2 sin(
ζn
2

)Une
−i ζn

2 ,= 2 sin(
ζn
2

)Un−1e
i((νn+1)αn+ ζn

2
). (11)

It is convenient to write yn = rne
iθn with

rn := |yn| ∈ [0, 2], θn := arg(yn) ∈ [0, 2π].

From (11), we readily get

θ1 = ϕ0 + (ν1 + 1)α1 +
ζ1

2
, θn+1 = θn +

ζn
2︸ ︷︷ ︸

ϕn

+(νn+1 + 1)αn+1 +
ζn+1

2
, (12)

where the sums on the right hand side are meant mod 2π. This recursion shows that (ζn+1, θn+1)
is determined by (ζn, θn) and the independently sampled (ξn+1, αn+1). Thus n 7→ (ζn, θn) is a
rather explicit Markov chain on the state space [0, 2π)× [0, 2π).
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Proposition 1. (i) The distribution

(ζn, θn) ∼ (ζ̂, θ̂), (13)

where ζ̂ and θ̂ are independent random variables distributed as ζ̂ ∼ TRUNCEXP(1, 2π) and
θ̂ ∼ UNI[0, 2π], is stationary for the Markov chain (ζn, θn).

(ii) Moreover, Döblin’s condition holds: There exists a δ > 0 such that for any measurable
subset A ⊂ [0, 2π)× [0, 2π)

P
(
(ζn+1, θn+1) ∈ A

∣∣ (ζn, θn)
)
≥ δP

(
(ζ̂, θ̂) ∈ A

)
, (14)

uniformly in the condition (ζn, θn) ∈ [0, 2π) × [0, 2π). In particular, the distribution (13)
is the unique stationary measure of the Markov chain (ζn, θn).

Proof. (i) follows from the explicit expressions in (12). Indeed, assuming (ζn, θn) ∼ (ζ̂, θ̂), it
follows that θ ∼ UNI(0, 2π) is independent of the pair (ζn+1,

ζn
2 + (νn+1 + 1)αn+1 + ζn+1

2 ). Thus,
θn+1 ∼ UNI(0, 2π) and is independent of ζn+1 and hence (ζn+1, θn+1) ∼ (ζ̂, θ̂), as well. For (ii),
the random variable (νn+1 + 1)αn+1 mod 2π is independent of the pair (ζn+1, θn + ζn

2 + ζn+1

2 )
and its distribution density (on the interval [0, 2π]) is bounded from below (note the importance
of the fact we are working modulo 2π). Hence (14).

2.3 The Markovized version of the MLP

In this section we construct a Markovized version of the MLP. The construction differs from the
construction of the limit process, in section 2.2, as the scatterers now have radii ε > 0. This
causes some formal complications. However, the essence is very similar.

In plain words the Markovized process flies for a truncated exponential time, then collides
with a ’fresh scatterer’. After a collision with a fresh scatterer, the Markovized process forgets
about all previous scatterers except the scatterer of the previous collision. The process then
behaves exactly like a physical Lorentz process with only one scatterer in the plane. Then
after an exponential time, regardless of the physical limitations, the Markovized process collides
with another fresh scatterer and forgets about all previous scatterers. We illustrate a sample
trajectory for the Markovized MLP in Figure 3.

The probabilistic ingredients used in this construction are the same as in the previous one:
ϕ0 ∼ UNI[0, 2π], (ξj)j≥1 ∼ EXP(1) and (αj)j≥1 ∼ 2 arccos(UNI[−1, 1]), all fully independent. We
also define the variables βj ∈ [0, 2ε], γj ∈ [0, 2π] by the formulas

βj = β(αj , ε) := 2 arctan
ε sin(αj/2)

1 + ε cos(αj/2)
,

γj = γ(αj , ε) := 2 arctan
sin(αj/2)

cos(αj/2) + ε
.

(15)

and write

νj = ν(ξj , αj , ε) := bξj/(2π − βj)c,
ζj = ζ(ξj , αj , ε) := ξj − νj(2π − βj).

(16)
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Figure 3: We illustrate a sample trajectory of the Markovized version of the
MLP at three successive times. Note that the third panel would not be possible
for the physical MLP, since the scatterer is placed in a region of space which
was already explored (a shadowed collision). However, the Markovized version
ignores this physical complication and collides anyways.

Note that, conditionally on αj (and thus, on the value of βj), the random variables νj and ζj
are independent and distributed as

P (νj = n) = e−(2π−βj)n(1− e−(2π−βj))11(n ≥ 0) ∼ GEOM(e−(2π−βj)),

d

dx
P (ζj < x) =

e−x

1− e−(2π−βj)
11(0 ≤ x ≤ 2π − βj) ∼ TRUNCEXP(1, 2π − βj).

(17)

We will also use

εj := ε(ξj , αj , ε) := 1− 2bζj/πc. (18)

The renewal times τn are the same as in (9).
We will use the same complex notation as in the previous section and construct inductively

the variables

U ε(τ−n ) =: U εn =: eiϕn , Y ε(τn) =: Y ε
n , Y ε

n − Y ε
n−1 =: yn =: ŷn + ỹn. (19)

using the collection of fully independent random variables (ϕ0, (ξn)n≥1, (αn)n≥1). Let Y ε
0 := 0,

U ε0 := eiϕ0 and proceed inductively as shown in (21) below. To distinguish between (φ mod 2π)/2
and (φ/2) mod 2π we will use the notation

{φ}
2

:=
φ− 2πbφ/2πc

2
(20)

ϕn+1 := ϕn + (νn+1 + 1)αn+1 − νn+1βn+1 + ζn+1

U εn+1 := eiϕn+1 = ei(ϕn+(νn+1+1)αn+1−νn+1βn+1+ζn+1

ŷn+1 := 2 sin(
{νn+1γn+1}

2
)ei(ϕn+

αn+1
2

+
{νn+1γn+1}

2
)

ỹn+1 := 2 sin(
ζn+1

2
)ei(ϕn+(νn+1+1)αn+1−νn+1βn+1+

ζn+1
2

)

Y ε
n+1 := Y ε

n + εŷn+1 + ỹn+1

(21)
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One can easily check that these formulas cover exactly what was said in plain words in an earlier
paragraph. The continuous time evolution t 7→ (U ε(t), Y ε(t)) within the time intervals [τn, τn+1)
also has explicit expression. However, as we don’t need it for the rest of the arguments we will
not give it here.

It is convenient to write

r̂n := |ŷn| , θ̂n := arg(ŷn), ŷn = r̂ne
iθ̂n ,

r̃n := |ỹn| , θ̃n := arg(ỹn), ỹn = r̃ne
iθ̃n ,

(22)

Then the recursion (21) is rewritten as

ε1 = ε(
ζ1

2
), r̃1 = 2 sin(

ζ1

2
), θ̃1 = ϕ0 + (ν1 + 1)α1 +

ζ1

2

εn+1 = ε(
ζn+1

2
), r̃n+1 = 2 sin(

ζn+1

2
), θ̃n+1 = θ̃n + εn arcsin(r̃n/2) + (νn+1 + 1)αn+1 +

ζn+1

2
,

(23)

and, recalling that βn + γn = αn

r̂1 = 2 sin({ν1γ1}/2), θ̂1 = ϕ0 + α1/2 + {ν1γ1}/2
r̂n+1 = 2 sin({νn+1γn+1}/2),

θ̂n+1 =

{
0 if νn+1 = 0

θ̃n + εn arcsin( r̃n2 ) + αn+1

2 + arcsin( r̂n+1

2 ) otherwise

(24)

Thus, since ζn can be written in terms of εn and r̃n, we conclude that

(εn+1, r̃n+1, θ̃n+1, r̂n+1, θ̂n+1)

is determined by (εn, r̃n, θ̃n, r̂n, θ̂n) and the independently sampled (αn+1, ξn+1). Thus, we have
a Markov chain on the state space {−1, 1} × [0, 2] × [0, 2π] × [0, 2] × [0, 2π]. We denote this
Markov chain ψεn.

Note that, if we condition on νn+1 = 0, then r̂n+1 = 0 and θ̂n+1 = 0. In which case
the Markov process is identical to the Markov process in Section 2.2, hence Döblin’s condition
applies also in this case with respect to the random variable

Ψ(θ, ζ) = (1− 2bζ/πc, 2 sin(ζ/2), θ, 0, 0)

where θ ∼ UNI[0, 2π], and ζ ∼ TRUNCEXP(1, 2π). By Proposition 1 the following proposition is
immediate.

Proposition 2. The Markov chain n 7→ ψεn satisfies the Döblin condition uniformly in ε with
respect to Ψ: There exists a δ > 0 such that for any ε > 0 sufficiently small and any measurable
subset A ⊂ {−1, 1} × [0, 2]× [0, 2π]× [0, 2]× [0, 2π]

P
(
ψεn+1 ∈ A

∣∣ ψεn) ≥ δP (Ψ ∈ A) , (25)

uniformly in the condition.
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Recollision with a past scatterer Shadowed collision

Figure 4: On the left we give an example of a recollision with a past scatterer.
The physical MLP (black) must respect this collision. Whereas the Markovized
MLP (red) has forgotten about the past scatterer and thus ignores the
recollision. On the right we give an example of a shadowed collision. Here
the Markovized MLP (red) changes direction in the third collision. However
this scatterer is in previously explored space, thus the physical MLP must
ignore the collision and continues in its trajectory. We call this a shadowed
collision.

2.3.1 Magnetic Lorentz process

Now we define the physical, MLP process {t 7→ Xε(t)} coupled to {t 7→ Y ε(t)}. The idea
is the following: we will have Xε(0) = Y ε(0) = 0 and Xε(t) = Y ε(t) for all t > 0 until the
first time the Y ε-process does something which is forbidden in the dynamics of the physical
process. At which point, we simply stop the X-process. In the subsequent sections we show
that, with high probability, this stopping time will occur at time ε−1 |log ε|−1. Therefore until
time T (ε) = o(ε−1 |log ε|−1) both processes are (w.h.p) well-defined.

Define the following indicator functions:

η̂j := 11
({
∃t < τj−1 :

∣∣Y ε
j − Y ε(t)

∣∣ < ε
})

η̃j := 11 ({∃i < j − 1 & t ∈ [τj−1, τj) : |Y ε
i − Y ε(t)| < ε})

ηj := max{η̃j , η̂j}.
(26)

That is, η̂j is the indicator of the event that the Y ε-process performs a jump and the scat-
terer corresponding to that jump blocks a previously explored region. We call this a shadowed
scattering. η̃j is the indicator of the event that, during the interval [τj−1, τj), the Y ε-process
recollides with a previously placed scatterer other than the ’current’ scatterer (i.e a recollision
with a scatterer other than the scatterer at position Y ε

j−1). Note that the Y ε-process ignores
this recollision with a past scatterer. ηj is the indicator that either of these mismatches occurs
for the jth path segment. These mismatches are illustrated in Fig. 4.

Now we define the following stopping time

ρ := min{n : ηn = 1}. (27)

For t ∈ [0, τρ−1) we set Xε(t) = Y ε(t). Thus, the mechanical Xε-process is defined up to the
first collision before a mismatch. It would be possible to include a recoupling procedure (as we
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did for the classical Lorentz gas in 3 dimensions [9]) allowing the Xε process to be defined after
this stopping time. However, our techniques do not allow us to extend the invariance principle
to these times (this is a result of the recurrence of the random walk in 2 dimensions), hence
there is no need to over-complicate the exposition by defining Xε beyond τρ−1.

2.3.2 Main technical result

The main technical theorem which implies Theorem 1 is

Theorem 2. Let T = T (ε) be such that limε→0 T (ε) =∞ and limε→0 T (ε)ε |log ε| = 0. Then

lim
ε→0

P (τρ ≤ T ) = 0. (28)

The proof of Theorem 2 follows two steps: First, we use Döblin’s inequality to decompose
the process {t 7→ Y ε} into i.i.d legs. These legs will form a stationary random walk. This
decomposition then allows for control of the associated Green’s function, which gives a bound
for the probability of a mismatch between two different legs. The second step is to then use
geometric arguments to show that within each separate leg there are no mismatches. From
there, Theorem 2 follows immediately.

3 Proof

The proof of Theorem 2 depends only on {t 7→ Y ε}. To ease the notation, we henceforth drop
the ε from the label.

3.1 Decomposition into legs

There are two issues which prevent us from directly applying some standard probabilistic tech-
niques for Green’s functions. The first is the ’self-recollisions’ (i.e when ν > 0). These complicate
certain probabilistic arguments we make later. The second is the Markov chain itself, which we
want to separate into independent pieces. To address these two issues we decompose the random
data into ’packs’. On each of these packs, we construct a ’leg’ of the Markovized process. The
legs are then i.i.d.

3.1.1 Döblin condition

Consider the Markov chain n 7→ ψεn =: ψn, we will use a standard trick to decompose this
Markov chain into a random walk with independent steps. Consider the process:

Let P (ψn, ψn+1) denote the transition probability of this Markov chain. By Proposition 2
we have that, there exists a δ > 0 such that

P (ψn, ψn+1) > δπ(ψn+1) (29)

where π is the distribution of Ψ. Hence, we can express

P (ψn, ψn+1) = δπ(ψn+1) + (1− δ)Q(ψn, ψn+1) (30)

where Q is some other probability transition function.
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The advantage of (30) is that we can reconstruct the Markov chain (ψn)n≥1 as follows: first,
define a Bernoulli random variable:

bn ∼ BERN(δ), P (bn = 1) = δ, P (bn = 0) = 1− δ, (n ≥ 2)

and b1 = 1. If bn = 1, then ψn is distributed according to π, if bn = 0 then ψn is distributed
according to Q(ψn−1, ψn).

3.1.2 Breaking (ψn)n≥1 into packs

To construct the legs, we break the random data into ’packs’. In words, the first and last path
segments of each pack involve no recollisions (i.e ν = 0). Moreover, to start and end a pack, we
require that bn = 1 (that is, we use the distribution π rather than Q to select ψn).

Formally, let Γ0 = 1 and let Θ0 = 0. Now for n ≥ 1 set:

Γn := min {j > Γn−1 : bj−1 = bj = 1, νj−1 = νj = 0} , γn := Γn − Γn−1,

Θn := τΓn , θn := Θn −Θn−1,

the condition that the (j − 1)st and jth steps involve no self-recollisions is necessary since, in
Proposition 2 the random variable Ψ assumes no recollisions. Furthermore for n ≥ 1 let:

ξn,j = ξΓn−1+j−1, 1 ≤ j ≤ γn,
yn,j = yΓn−1+j−1, 1 ≤ j ≤ γn.

We define a pack to be:

$n := (γn, (ξn,j , yn,j) : 1 ≤ j ≤ γn) n ≥ 1.

It is important to note that the individual packs are independent, identically distributed. On
each pack we define the associated discrete and continuous Y = Y ε process: for n ≥ 1:

Yn,0 = Y (Θn−1), Yn,j = Yn,0 +

j∑
i=1

yn,j , j ≤ γn,

Yn(0) = Y (Θn−1), Yn(t) := Y (Θn−1 + t), 0 ≤ t ≤ θn.

Finally we define the discrete end-point process:

Ξ0 = 0, Ξn := Ξn−1 +

γn∑
i=1

yn,i, n ≥ 1.

That is the process {n 7→ Ξn} denotes the discrete process made of the end-point of the successive
legs.

12



3.1.3 Green’s function estimates

Define the following Green’s functions (occupation measures): given a set A ⊂ R2,

G(A) := E (|{1 ≤ k ≤ N(T ) : Yk ∈ A}|)
H(A) := E (|{0 < t ≤ T : Y (t) ∈ A}|)
g(A) := E (|{1 ≤ k ≤ γ1 : Yk ∈ A}|)
h(A) := E (|{0 < t ≤ θ1 : Y (t) ∈ A}|)
R(A) := E (|{1 ≤ k ≤ n(T ) : Ξk ∈ A}|) ,

where N(T ) = max{n ≥ 0 : τn < T} (the total number of collisions in time T ) and n(T ) :=
max{n ≥ 0 : ΘΓn < T} (the total number of legs).

These occupation measures then satisfy the following bounds

Lemma 1. For any measurable set A ⊂ R2 the following bounds hold:

g(A), h(A) ≤ L(A), R(A), G(A), H(A) ≤ K(A) + L(A) (31)

where

K(dx) := C min{ε−1, |x|−1}dx+ Cdx, L(dx) := C |x|−1 e−c|x|dx

for some constants 0 < c,C <∞.

Proof. First, we consider

g1(A) := P (y1 ∈ A) . (32)

Since ν1 = 0 we know that

y1 = ỹ1 = U0e
iα12 sin

ξ1

2
eiξ1/2,

in particular, since the density of distribution of α1 and ξ1 are bounded, there exists a constant
C <∞ such that

g1(A) ≤ CP (v ∈ A) =: Cg̃1(A) (33)

where v is a uniformly distributed vector on the radius 2 disk.
To achieve the desired bound we introduce an auxiliary discrete process, (Ỹn)1≤n≤γ1 . Let

Ỹ0 = 0 and let Ỹ1 = v. Then, let Ỹ2 − Ỹ1 be distributed like y1 (independent of Ỹ1), and all
subsequent steps follow the construction of the markovized Lorentz process (see Subsection 2.3).
In words, n 7→ Ỹn takes one step which is simply a uniformly distributed vector on the radius 2
disk. Then, from there we start a discrete markovized Lorentz process. With that, the following
upper bound follows from (33) and the bounded distributions:

g(A) = E
(
E
(
|{1 ≤ k ≤ γ1 : Yk − Y1 ∈ A− x}|

∣∣ Y1 = x
))

≤ CE
(
E
(∣∣∣{1 ≤ k ≤ γ1 : Ỹk − Ỹ1 ∈ A− x}

∣∣∣ ∣∣ Ỹ1 = x
))

≤ C
∫
R2

g̃2(A− x)g̃1(dx).

(34)
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where g̃2(A) := E
(∣∣∣{1 ≤ k ≤ γ1 : Ỹk − Ỹ1 ∈ A}

∣∣∣), that is, we use the independence of the first

two steps of Ỹk to decompose the above expectation into a convolution.
Because of the geometric distribution of bn we conclude that γ1 is exponentially tight. That

is,

g̃2({x : |x| > s}) ≤ Ce−cs, g̃2(R2) = E (γ1) <∞.

Inserting these into (34), and using the fact that g̃1(dx) ≤ |x|−1 dx, the bounds in (31) on g(A)
follow. The bound on h(A) follows more or less immediately from the bound on g(A) and the
fact that the ξn are exponentially distributed.

Turning now to R(dx), recall that Ξ is a random walk, whose steps are i.i.d and exponentially
bounded. Standard bounds on such walks are well-known (see e.g [9, Lemma 6]) yielding the
bound R(dx) ≤ |x|−(d−2) dx as x → ∞. To achieve a bound when x → 0 we use a similar
strategy as for g(dx). Define a discrete process {Ξ̃}n∈N similar to {Ξn} as follows: Ξ̃1 ∼ Ξ1,
then Ξ̃2− Ξ̃1 ∼ Ξ1 independent of Ξ̃1. All the rest of the Ξ̃n for n ≥ 3 are distributed according
to the rules defining Ξn. Now, once again we can use the fact that the density of distribution
of the first step of Ξ2 − Ξ1 (i.e y2,1) is bounded to conclude:

R(A) ≤ CP
(

Ξ̃1 ∈ A
)

+ C

∫
R2

R̃(A− x)P
(

Ξ̃1 ∈ dx
)
,

= CP (Ξ1 ∈ A) + C

∫
R2

R(A− x)P (Ξ1 ∈ dx) ,

(35)

where R̃(A) := E
(∣∣∣{2 ≤ k < n(T ) : Ξ̃k − Ξ̃1 ∈ A}

∣∣∣). Now note that by the definition of n(T )

we have R(R2) = E (n(T )) = Cε−1. With that the bound, (31) for R follows from P (Ξ1 ∈ A) <
g(A) and (35)

The bounds forG andH follow a similar strategy. We use the bounded density of distribution
of the first step to write

G(A) ≤ Cg(A) + C

∫
R2

g(A− x)R(dx),

H(A) ≤ Ch(A) + C

∫
R2

h(A− x)R(dx),

(36)

from which (31) follow.

3.2 Inter-leg mismatches

In this section we show that there are no mismatches between path segments in different legs.
Let t 7→ Y (t) be a Markovian flight process starting at the origin with initial velocity U0.
Now we construct two auxiliary processes. Let α̃ ∼ 2 arccos(UNI[−1, 1]). Now let t 7→ Y ∗(t)
denote a Markovian flight process moving in the clockwise (rather than anti-clockwise) direction,
starting at the origin, with initial velocity U0e

α̃. In words, the process t 7→ Y ∗(t) denotes the
past trajectory of t 7→ Y (t). Finally we let t 7→ Y ∗∗ be a Markovian flight process moving in
the clockwise direction which is fully independent of Y and Y ∗. We let n 7→ Y ∗n and n 7→ Y ∗∗n
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denote the discrete processes associated to Y ∗ and Y ∗∗ respectively. Define the following events:

Ŵj := {min{|Y (t)− Yj | : 0 < t < Θj−1, Γj−1 < k ≤ Γj} < ε}

W̃j := {min{|Yk − Y (t)| : 0 < k < Γj−1, Θj−1 < t ≤ Θj} < ε}

Ŵ ∗T := {min{|Y ∗(t)− Yk| : 0 < t < T, 0 < k ≤ γ} < ε}

W̃ ∗T := {min{|Y ∗k − Y (t)| : 0 < k < bT c, 0 < t ≤ θ} < ε} .

Ŵ ∗∗T := {min{|Y ∗∗(t)− Y | : 0 < t < T, 0 < k ≤ γ} < ε}

W̃ ∗∗T := {min{|Y ∗∗k − Y (t)| : 0 < k < bT c, 0 < t ≤ θ} < ε} .

Note that there exists a constant C <∞ independent of ε such that:

P
(
Ŵj

)
≤ P

(
Ŵ ∗T

)
≤ CP

(
Ŵ ∗∗T

)
≤ 2Cε−1

∑
z∈Z2

G(Bzε,2ε)h(Bzε,3ε)

P
(
W̃j

)
≤ P

(
W̃ ∗T

)
≤ CP

(
W̃ ∗∗T

)
≤ 2Cε−1

∑
z∈Z2

H(Bzε,2ε)g(Bzε,3ε).
(37)

As before, the second inequality follows from the bounded distribution of the first step of a
Markovian flight process.

Now we insert the bounds from Lemma 31 into (37) and evaluate the resulting sums using
Riemann sums (similar to [9, Section 3.4]), i.e

P
(
Ŵj

)
≤ 2Cε−1

∑
z∈Z2

G(Bzε,2ε)h(Bzε,3ε)

≤ 2Cε−1
∑
z∈Z2

(K(Bzε,2ε) + L(Bzε,2ε))L(Bzε,3ε)

≤ Cε3
∑

06=z∈Z2

(|εz|−1 + |εz|−1 e−c|εz|) |εz|−1 e−c|εz| + Cε

≤ Cε3
∑

0 6=z∈Z2

|εz|−2 · e−c|z| + Cε

≤ Cε
∫
R2\B0,ε

e−c|z| |z|−2 dz + Cε

≤ Cε
∫ ∞
ε

e−cuu−1du+ Cε ≤ Cε |log ε|

for constants C < ∞ changing from line to line. Thus (with the equivalent bound for W̃j

following the same lines):

Proposition 3. There exists a constant C <∞ such that for all j ≥ 1

P
(
W̃j

)
≤ Cε |log ε| , P

(
Ŵj

)
≤ Cε |log ε| . (38)

3.3 Intra-leg mismatches

Above, we have shown that (on our time scales) the probability of a mismatch occurring between
path segments in two different legs goes to 0 as ε→ 0. It remains to show that path segments
within a single leg do not interfere with one another. For this we require the following simple
geometric lemma.
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3.3.1 A geometric lemma

In this section, we estimate the probability that the Markovian flight process, during one path
segment (i.e between two successive fresh collisions) hits a pre-placed spherical region of radius
ε. To that end, fix a triple o ∈ R (taken for the moment to be the origin), u ∈ S1, and α ∈ [0, 2π].
Let {t 7→ Y(t)} be a Markovian flight process such that Y(0) = o, with initial velocity ueiα and
one single scatterer centered at b ∈ εS1. Note that b is uniquely determined by u and α (i.e
the scatterer is at the unique position such that collision at o with velocity u results in velocity
ueiα). Therefore, Y performs circular motion, colliding infinitely many times with the scatterer
at b.

Lemma 2. Let u ∈ S1 be uniformly distributed on the circle and α ∼ 2 arccos(UNI[−1, 1]).
There exists a constant C <∞ such that for ε > 0 small enough, any time ξ ∈ (0,∞), and any
vector v ∈ R2

P

(
min
t<ξ
|Y(t)− v| < ε

)
≤ C ε

|v|
ξ. (39)

where {t 7→ Y(t)} is the process described above.

Proof. First we consider the trajectory before the first self-collision. It is evident that

P

(
min
t<t0
|Y(t)− v| < ε

)
≤ C ε

|v|
. (40)

where t0 is the time of the first recollision (i.e min(t > 0 : ν(t) = 1)).
Now we proceed inductively. Let ζ(ξ) be defined as in (16) , then:

P

(
min

t∈[ξ−ζ(ξ),ξ]
|Y(t)− v| < ε

)
= P

(
min
t<ζ(ξ)

∣∣∣Ỹ(t)− v
∣∣∣ < ε

)
where Ỹ is a process which begins at position ŷ (defined as in (??)) with velocity: ũ =
uei(ν(ξ)+1)α−iν(ξ)β where β = β(u, α) is defined in (15).

Note that |ŷ| < ε, and |β| < 2ε. Therefore, using the uniformity of (40), we conclude

P

(
min
t<ζ(ξ)

∣∣∣Ỹ(t)− v
∣∣∣ < ε

)
≤ C ε

|v|
,

for C < ∞ large enough. Now we can use the union bound and the inductive hypothesis to
conclude (39).

3.3.2 Intra-leg recollisions

The next lemma controls the probability of a mismatch in the first leg recall the indicators in
(26).

Lemma 3. There exists a constant C <∞ such that, for any label j ∈ {1, . . . , γ} the following
bound holds:

E (ηj) ≤ Cγε |log ε| . (41)

16



Proof. First note that, under time reversal, recollisions become shadowed events, and vice-versa.
Therefore, since the distribution of the Y -process is invariant under time reversal (up to a mirror
symmetry), we may focus only on recollisions. Next, define the following indicators:

η̃j,k := 11
(
{∃t ∈ [τj−1, τj) :

∣∣Y ′k − Y (t)
∣∣ < ε}

)
(42)

for j = 3, . . . , γ and k ≤ j − 2. That is, η̃j,k is the indicator that during the jth path segment,
the point particle recollides with the kth scatterer.

For simplicity, we begin by considering direct recollisions, when k = j − 2. The probability
of a direct recollision can be controlled rather easily using Lemma 2. Namely, if we condition
on ξj , Yj−1, Yj−2, then Lemma 2 implies:

E
(
η̃j,j−2

∣∣ ξj , Yj−1, Yj−2

)
≤ min

(
Cε

|Yj−1 − Yj−2|
(νj + 1), 1

)
Note that Lemma 2 was proved for uniformly distributed velocities, however since the collision
kernel has bounded density it can be applied here as well, and the only change will be a uniform
constant multiple.

A simple geometric observation is that there exists a constant C > 0 such that |Yj−1 − Yj−2| ≥
C min(ζj−1, 2π − βj−1 − ζj−1). Thus:

E
(
η̃j,j−2

∣∣ ξj , ξj−1

)
≤ min

(
Cε

min(ζj−1, 2π − βj−1 − ζj−1)
(νj + 1), 1

)
Now we can use the tower rule and the distributions of ζj−1 and νj to bound

E (η̃j,j−2) ≤ E

(
min

(
Cε

min(ζj , 2π − βj − ζj)
νj , 1

))
≤ C

∞∑
n=1

(n+ 1)

e2πn

∫ 2π

0
min

( ε
x
, 1
)
dx

≤ Cε |log ε| .

(43)

Now we turn to η̃j,k for k < j−2. Again, we begin by conditioning on Yj−1, Yk, ξj and using
Lemma 2 to bound

E
(
η̃k,j

∣∣ Yj−1, Yk, ξj
)
≤ min

(
Cε

|Yj−1 − Yk|
(νj + 1), 1

)
.

In the notation of (21) we can write

E
(
η̃k,j

∣∣ Yj−2, Yk, ξj
)
≤
∫ ∞

0

∫ 2π

0
min

(
Cε

|Yj−2 + εŷj−1 + ỹj−1 − Yk|
(νj + 1), 1

)
e−ξj−1µα(dαj−1)dξj−1.

Note that both the probability densities for αj−1 and ζj−1 are bounded from above. Therefore
we can upper bound the above conditional expectation by

E
(
η̃k,j

∣∣ Yj−2, Yk, ξj
)
≤ max

ŷ∈B1(0)

(∫ 2

0

∫ 2π

0
min

(
Cε

|Yj−2 − Yk + εŷ + veiα|
(νj + 1), 1

)
dαdv

)
,

≤
∫ 2

0
min

(
Cε

v
(νj + 1), 1

)
dv,

≤ Cε |log ε| (νj + 1),
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where B1(0) is the unit ball centered at 0. We can uniformly bound this by

E
(
η̃k,j

∣∣ Yj−2, Yk, ξj
)
≤ Cε |log ε| (νj + 1).

From here, the tower law then implies

E (η̃k,j) ≤ Cε |log ε| . (44)

Putting (44) and (43) together, applying the union bound and the tightness of γ, we conclude
(41).

3.4 Proof of Theorem 2

The rest of the proof follows [9, Section 7] fairly exactly. Let $n, n ≥ 1 be an i.i.d sequence of
packs. For each pack we denote ((Yn(t)) : 0 ≤ t ≤ θn)n≥1 the associated leg. Let {t 7→ Y (t)}
denote the full Markovian process decomposed into legs. Furthermore we define two discrete
stopping times:

ρ1 := min{n ≥ 1 : ηnj = 1 for some j ∈ {1, . . . , γn}}

ρ2 := min{n ≥ 1 : max{W̃n, Ŵn} = 1}

where ηnj is the same as the indicators in (26) for the process {t 7→ Yn(t)} (i.e the indicator that
during the jth step of the nth leg there is a mismatch with another path segment in the same
leg). Therefore, ρ1 is the time of the first mismatch within one leg, and ρ2 is the first time two
legs intersect to give a mismatch.

With that the stopping time defining X is given by ρ = min{ρ1, ρ2}. And by construction,
X(t) = Y (t) for all t ≤ Θρ−1. Using Proposition 3 and Lemma 3 we have

P (Θρ−1 < T ) ≤ P
(
ρ1 ≤ 2E (θ)−1 T

)
+ P

(
ρ2 ≤ 2E (θ)−1 T

)
+ P

2E(θ)−1<T∑
j=1

θj < T


≤ Cε |log ε|T + Ce−cT ,

for two constants C <∞ and c > 0. Thus

lim
ε→0

P (Θρ−1 < T ) = 0, (45)

for T = o
(
ε−1 |log ε|−1

)
. From here Theorem 2 follows immediately.
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