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Abstract. Given a compact segment, β, of a cuspidal geodesic on the modular surface,
we study the number of sign changes of cusp forms and Eisenstein series along β. We
prove unconditionally a sharp lower bound for Eisenstein series along a full density set
of spectral parameters. Conditioned on certain moment bounds, we extend this to all
spectral parameters, and prove similar theorems for cusp forms. The arguments rely in
part on the authors’ mean square bounds [KKL24], and on removing the assumption of
the Lindelöf hypothesis from recent work of Ki [Ki23].

1. Introduction

Let Γ < SL2(R) be a discrete, cofinite group acting on the upper half-plane H by frac-
tional linear transformations. Given a real-valued automorphic function f : Γ\H→ R, we
denote by Zf its zero set, which separates the space into connected nodal domains. A key
question in the analysis of f is to consider the number of nodal domains. Of particular
interest, with applications to quantum chaos, is to study the number of nodal domains of
eigenfunctions of the hyperbolic Laplace-Beltrami operator, as the eigenvalue goes to infin-
ity. Henceforth we work specifically with the modular group Γ := SL2(Z); the proofs below
can be generalized to congruence subgroups, as long as they include reflection symmetries.

Recall the spectral decomposition of L2(Γ\H) into cusp forms and Eisenstein series. The
Eisenstein series for the modular group Γ is given by

E(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)s,

where Γ∞ is the stabilizer of ∞ in Γ. This series converges absolutely for Re(s) > 1, and
has meromorphic continuation for all s ∈ C. For s = 1

2
+ it, the function

Et(z) := E(z,
1

2
+ it)

is an eigenfunction of the Laplacian (as well as all Hecke operators), and has Laplace
eigenvalue λ = 1

4
+ t2 .

Moreover, a Maass cusp form is a function φ : H→ R satisfying

(i) ∆φ+ λφ = 0, λ = λφ > 0,
(ii) φ(γz) = φ(z), γ ∈ Γ,

(iii) and φ ∈ L2(Γ\H) with L2 norm 1.
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Given such a cusp form φ, we write its eigenvalue as λφ = 1
4

+ t2φ.
A heuristic argument of Bogomolny and Schmit [BS02] gives a very precise prediction

for the asymptotic number NΩ(φ) of nodal domains of a Maass cusp form φ in a compact
domain Ω ⊆ Γ\H, namely that NΩ(φ) grows like a constant times λφ, as λφ → ∞. While
their prediction is supported by numerics, it seems currently out of reach, and even the
weaker claim that NΩ(φ) → ∞ as λφ → ∞ is not currently known unconditionally (and
may not be true for general surfaces, see [GRS13, p.3]).

The space Γ\H has an orientation reversing isometry, σ(x+ iy) = −x+ iy. We say that
a nodal domain is inert if it is preserved by σ, and split if it is paired with another domain.
We denote by Nin(f) and Nsp(f) the number of inert and split domains. Let δ ⊂ FΓ denote
the set of fixed points of σ, which is naturally partitioned as

δ = δ1 ∪ δ2 ∪ δ3,

with δ1 = {iy : y ≥ 1}, δ2 = {1
2

+ iy : y ≥
√

3
2
} and δ3 = {x + iy : 0 < x < 1

2
, x2 + y2 = 1}.

It was then observed in [GRS13] that for an even cusp form (i.e., a cusp form satisfying
φ(σz) = φ(z)), one can bound Nin(φ) by counting the number of sign changes of φ along δ,
or more generally, along a non-empty compact segment β ⊆ δ. Explicitly, given a segment
β ⊆ δ, let Kβ(φ) denote the number of sign changes of φ along β, and Nβ

in(φ) the number
of nodal domains intersecting β; then

(1.1) 1 +
1

2
Kβ(φ) ≤ Nβ

in(φ) ≤ |Zφ ∩ β|.

It is thus possible to reduce the problem of studying the number of (inert) nodal domains
to studying the number of sign changes/zeros. For this problem, [GRS13] proved, assuming
the Lindelöf hypothesis for the L-functions attached to φ, that, given a compact geodesic
segment β in δ1 or δ2,

tνφ � |Zφ ∩ β|� tφ,

for any ν < 1/12. (Note that the upper bound here is unconditional and follows from general
complexification techniques [TZ09].) In addition, these techniques can be applied to give a
similar, although still conditional, lower bound for the same problem on Eisenstein series.
Following this Jang and Jung [JJ18] used arithmetic quantum unique ergodicity, to prove
qualitatively that the number of nodal domains goes to ∞ with the eigenvalue. Moreover,
Jung and Young [JY19] proved an unconditional but weaker lower bound for Eisenstein
series with ν < 1/51.

Recently, Ki [Ki23, Theorem 1] proved an essentially sharp (in the exponent) lower bound
for both Maass forms and the Eisenstein series, conditional on both the Lindelöf hypothesis
for the associated L-function and a fourth moment bound along β. Explicitly, Ki shows
that for any ε > 0,

(1.2) |Zf ∩ β| �ε t1−εf ,

where f is either a Maass form or the Eisenstein series (Ki’s technique can also be applied
to sign changes, Kβ(f)). Our Theorem 1.3 recovers this sharp lower bound for Eisenstein
series without the assumption of the Lindelöf hypothesis, and in Theorem 1.7 we also remove
assumption on the fourth moment bound, by restricting to a full-density subset of forms.
Moreover, Theorems 1.9 and 1.12 show similar results for cusp forms, conditioned on an
L2 estimate for L-functions (namely, Conjecture 2.12).
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While we specialize to the modular surface, we can extend this work to congruence
subgroups with reflection symmetries. In addition, we specialize our analysis to the central
line z = iy, but this can also be extended to any cuspidal geodesic, see Remark 1.14.

1.1. Main results. The main goal of this paper is to prove the same bound as Ki’s (1.2)
for the Eisenstein series, without assuming the Lindelöf hypothesis.

Theorem 1.3. Let β = i[a, b] be a compact segment of the imaginary line, and suppose
that there is some p > 2 such that for all ε > 0,(∫ b

a

|Et(iy)|pdy

y

)1/p

�ε t
ε,(1.4)

as t→∞. Then for any ε > 0,

Kβ(Et)�ε t
1−ε,(1.5)

as t→∞.

Remark 1.6. Explicitly what we show is that the bound of order tε for the Lp norm, implies
a lower bound of order t1−ε

′
for Kβ(Et) with any ε′ > 8p

p−2
ε (see §3.3). In particular, a

sufficiently strong subconvex bound for the sup norm of Et of order tν with ν < 1
8

is

already sufficient to obtain a non trivial lower bound for Kβ(Et). We note however that
with the current best known bound for the sup norm of Et we can only take ν > 1

3
, which

is not sufficient to get an unconditional improvement here.

While (1.4) is beyond the reach of current techniques, it follows from the sup-norm
conjecture. We can show that the sup norm bounds do hold for a full-density set of

spectral parameters; here we say that A ⊂ R is of full density to mean that |A∩[T,2T ]|
T

→ 1
as T →∞. This yields the following unconditional estimate.

Theorem 1.7. Let β = i[a, b] be a compact segment of the imaginary line. For any m > 17
there is a set A = A(m) ⊆ R of full density, such that for all t ∈ A,

Kβ(Et) ≥
t

(log t)m
.(1.8)

The key insight in the proof of Theorem 1.3 is to show that, rather than the Lindelöf
hypothesis, one can make do with an estimate on the L2 norm of the L-function associated
to the Eisenstein series, which translates to a fourth moment estimate on the Riemann zeta
function. For Maass forms, we can make the same simplification. However, while the L2

estimate for the associated L-function is certainly weaker than the Lindelöf hypothesis and
is known in many instances, it is still not known in the precise setup needed in our context.
In fact, such estimates also appear in the study of restricted quantum unique ergodicity for
Maass forms and would be of interest there (see [You18]). We state the requisite L2 estimate
below as Conjecture 2.12. Assuming this conjecture holds, we can prove the analogues of
Theorem 1.3 and Theorem 1.7 in the context of cusp forms:

Theorem 1.9. Fix β = i[a, b] a compact segment of the imaginary line, and assume that
there is some p > 2 such that for any even Hecke cusp form φ and any ε > 0,(∫ b

a

|φ(iy)|pdy

y

)1/p

�ε t
ε
φ.(1.10)
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Further, assume Conjecture 2.12. Then for any ε > 0,

Kβ(φ)�ε t
1−ε
φ .(1.11)

Once again, we can prove the sup-norm conjecture for φ for a set of forms of full density,
as follows.

Theorem 1.12. Fix β, a compact segment of the imaginary line i[a, b], and assume Con-
jecture 2.12. For any ε > 0, there is a full density set A = A(ε) ⊆ N such that for all
j ∈ A,

Kβ(φj) ≥ t1−εφj
.(1.13)

Note that for certain real Riemann surfaces, Zelditch showed logarithmic growth of the
number of nodal domains, along a full-density sequence of eigenvalues, see [Zel16]. Using
the bound (1.1), our Theorem 1.12 (conditionally) produces nearly linear growth.

Remark 1.14. As stated, the above theorems concern the geodesic z = iy. In fact, the proof
below works for any cuspidal geodesic x + iy with x = p

q
a rational number. For this, we

require estimates on the second moment of the series∑
n

af (n)e(nx)

ns

and a lower bound on the L2-norm of the Eisenstein series/cusp form along β = {x + iy :
a < y < b}.

The lower bound is proved in [You18] for Eisenstein series, and in [GRS13] (although
this is only proved for the lines x = 0, and x = 1

2
) for cusp forms.

For the estimates on the twisted L series, we split into congruence classes modulo q using
Dirichlet characters. This allows us to write the L function as

1

φ(q)

∑
amod q

eq(aq)
∑
χ

χ(a)
∑
n

af (n)χ(n)

ns
.

Now for cusp forms, bounding the inner twisted L-function requires us to extend Conjecture
2.12 to these. For the Eisenstein series, this requires known estimates for the 4th moment
of Dirichlet L-functions [Top21].

1.2. Proof strategy. For both Eisenstein series and Maass forms, the proofs of Theorems
1.9, 1.12, 1.3 and 1.7 follow the same strategy. The starting point is [Ki23, Proof of Theorem
1], wherein Ki conditionally proves the inequality (1.13) for all cusp forms (the method also
applies to Eisenstein series).

The first key idea in our proof is a modification of Ki’s argument, allowing us to replace
the full strength of the Lindelöf hypothesis with corresponding bounds on the second mo-
ment of the associated L-function. For cusp forms, this is Conjecture 2.12, while for the
Eisenstein series, this boils down to fourth moment estimates on the Riemann zeta function
which are well-known (see §2.2).

The second point (necessary only for the proofs of Theorems 1.7 and 1.12) is that, while
the sup norm bound remains open for both cusp forms and the Eisenstein series, it is known
on average over the spectral parameter. For the Eisenstein series, the authors [KKL24]
proved a mean square bound which implies the sup norm bound for almost all spectral
parameters (see §2.2). For cusp forms, a simple argument using the pre-trace formula gives
similar bounds on average (see §2.3).
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The proof of Theorem 1.9 is identical, but (1.10) allows one to avoid appealing to sup
norm bounds on average. We focus on Theorems 1.12 and 1.7 below since the proofs include
one extra step.

Notation. We use standard Vinogradov notation that f � g if there is a constant C > 0
so that f(x) ≤ Cg(x) for all x.

Acknowledgements. We thank Valentin Blomer, Henryk Iwaniec, and Matt Young for
many insightful discussions. This paper was written while the second-named author was
visiting Princeton University; he would like to express his gratitude for their hospitality.

2. Preliminaries

2.1. Littlewood’s sign changes lemma. A key analytic ingredient in Ki’s proof is [Ki23,
Theorem 2.2], which is a variant on a theorem of Littlewood [Lit66] controlling the number
of zeros of a real valued function. While Ki’s formulation (as well as Littlewood’s) discusses
the number of zeros, we note that the argument actually controls the number of sign
changes. For the sake of completeness, we include the proof of this result below.

Given a real valued function f on the interval I = [a, b] let Mp(f) denote the Lp(I) norm:

Mp(f) :=

(
1

|I|

∫
I

|f(y)|p dy

)1/p

.

The following is a slight variant of [Ki23, Theorem 2.2].

Lemma 2.1. Let f be a real valued function defined on an open interval containing I =

[a, b]. Let N ∈ N be sufficiently large so that f is defined on [a, b + η] with η = |I|
N

, and
define

J(f, η) =
1

|I|

∫
I

∣∣∣∣∫ η

0

f(y + v)dv

∣∣∣∣ dy.
Suppose that there is some c ∈ (0, 1) such that M1(f) ≥ cM2(f) and that J(f, η) < c3ηM2(f)

16
.

Then the number of sign changes, KI(f), of f on I satisfies

KI(f) ≥ c2N

8
.

Proof. By scaling and shifting f we may assume that I = [0, 1] and η = 1
N

. For any

1 ≤ m ≤ N let Im = [m−1
N
, m
N

), and define

Jm(f, η) :=

∫
Im

∣∣∣∣∫ η

0

f(y + t)dt

∣∣∣∣ dy.
Let M1 = {1 ≤ m ≤ N : f changes sign in Im} and let M2 be its complement. Since
in any interval Im with m ∈ M1 there is at least one sign change of f , we have that

KI(f) ≥ |M1|= N − |M2|. Let E = ∪m∈M2Im so that |E|= |M2|
N

and the result will

follow by showing that |E|< 1 − c2

8
. We assume now that |E|> 1 − c2

8
and proceed by

contradiction.
Let H := {y ∈ I : |f(y)|≥ cM2(f)

2
}, then the assumption M1(f) ≥ cM2(f) implies that

|H|≥ 1− c2

4
. Indeed, we can estimate

cM2(f) ≤ M1(f) ≤
∫
H

f +

∫
Hc

f ≤ |H|1/2M2(f) + (1− |H|)cM2(f)

2
.



6 DUBI KELMER, ALEX KONTOROVICH, AND CHRISTOPHER LUTSKO

Setting X =
√
|H|, then from the above display we see that X2− 2

c
X+ 1 ≤ 0 hence X > c

2

so |H|> c2

4
. For any m ∈ M2 we have that J∗m(f, η) :=

∫
Im

∫ η
0
|f(y + t)|dtdy = Jm(f, η).

We can estimate on one hand∑
m∈M2

J∗m(f, η) =
∑
m∈M2

Jm(f, η) ≤ J(f, η) <
c3ηM2(f)

16
.

On the other hand, we have∑
m∈M2

J∗m(f, η) =

∫ η

0

∫
E

|f(y + t)|dydt =

∫ η

0

∫
Et

|f(y)|dydt,

where Et is the shift of E by t. By our assumption |Et|= |E|> 1− c2

8
and since

c2

4
≤ |H|= |H ∩ Et|+|H ∩ Ec

t |< |H ∩ Et|+
c2

8
,

using our bounds on |H|, we also have that |H ∩ Et|> c2

8
. We can thus bound∫ η

0

∫
Et

|f(y)|dydt ≥
∫ η

0

∫
Et∩H
|f(y)|dydt > c3ηM2(f)

16
,

in contradiction. �

2.2. Preparation for Eisenstein series. We now collect a number of results regarding
the Eisenstein series and its L-function that will be needed in our proof.

In previous work, the authors proved the following mean square bounds on the Eisenstein
series:

Theorem 2.2 ([KKL24, Theorem 1]). Given a compact region Ω ⊆ H there is c > 0 such
that for all z ∈ Ω

1

T

∫ 2T

T

∣∣∣∣E(z,
1

2
+ it)

∣∣∣∣2 dt ≤ c log4(T ).(2.3)

Corollary 2.4. For any compact set Ω and any a > 2 there is a set A = AΩ,a ⊆ R
satisfying that

(1) |A ∩ [T, 2T ]|= T (1 +O( 1
log(T )2a−4 ))

(2) For any t ∈ A for any z ∈ Ω we have |Et(z)|≤ log(t)a.

The next result is a lower bound on M2(Et) given in [You18] that is needed in order to
apply Lemma 2.1.

Proposition 2.5 ([You18, Theorem 1.1]).

M2(Et) :=

(
1

b− a

∫ b

a

|Et(iy)|2 dy

)1/2

� (log T )1/2

for any t ∈ R and any fixed segment (a, b).

The final result we need is about the size of the L-function of the Eisenstein series on the
critical line, which can be written explicitly in terms of the Riemmann zeta function. Recall,
the Lindelöf hypothesis predicts that, for any ε > 0 and all t ∈ R, one has |ζ(1

2
+ it)|=

O((1 + |t|)ε). While the Lindelöf hypothesis is far from reach of modern technology, there
are some results concerning moment bounds on the zeta function which will suffice for our
purposes. The following classical theorem was proven by Heath-Brown
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Theorem 2.6 ([HB79]). There is κ > 0 such that for any T large one has

1

T

∫ T

0

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣4 dt = P4(log(T )) +O(T−κ),(2.7)

with P4(x) a polynomial of degree 4.

2.3. Preparation for Maass forms. We now collect the corresponding results we need
to apply the argument for Maass forms.

The first result regards the sup norm of Maass forms. While we cannot prove the conjec-
tured sup norm bounds for Maass forms, we can prove the following mean square bounds
on them, which imply the mean square bounds on average. While this result is not new
(see e.g [Iwa02, Proposition 7.2] we include a proof for the sake of completeness.

Lemma 2.8. There is C > 0 such that for all z in a compact set Ω ⊂ H we have the
following bounds: ∑

tφj≤T

|φj(z)|2 ≤ CT 2

Proof. We recall some well known results on the pre-trace formula and refer to [Hej76]
for more details. Given a point pair invariant k(z, w) = k(sinh2(d(z, w))) with d(z, w)
the hyperbolic distance and k ∈ C∞c (R+), its spherical transform is defined as H(s) =∫
H2 k(z, i)Im(z)sdµ(z). By [Hej76, Proposition 4.1] the point pair invariant can be recovered

from H(s) as follows : Let h(r) = H(1
2

+ ir) and let g(u) = 1
2π

∫∞
−∞ h(r)e−irudr denote its

Fourier transform, then, defining the auxiliary function Q ∈ C∞c (R+) by g(u) = Q(sinh2(u
2
))

we have that k(t) = − 1
π

∫∞
t

dQ(r)√
r−t . We also recall that k(0) = 1

2π

∫∞
0
h(r)r tanh(πr)dr (see

[Hej76, Proposition 6.4]).
Given any such point pair invariant we have the pre-trace formula∑

γ∈Γ

k(z, γz) =
∑
j

h(tφj)|φj(z)|2+
1

2π

∫
R
h(t)|E(z, 1

2
+ it)|2dt.

Now, fix a smooth even compactly supported function g(u) ∈ C∞c ((−1, 1)) with Fourier
transform h(r) ≥ 0 for r ∈ R and h(r) ≥ 1

2
for |r|≤ 1. For any T ≥ 1 let gT (u) =

Tg(Tu) so that hT (r) = h( r
T

) and kT (z, w) the corresponding point pair invariant. Since

gT (u) is supported on (− 1
T
, 1
T

) the point pair invariant kT (z, w) is supported on the set

{(z, w)|d(z, w) ≤ 1
T
} with d(z, w) the hyperbolic distance. Since Γ acts properly discon-

tinuously on H2 for any fixed z there is δ = δ(z) such that d(z, γz) ≥ δ for any γ ∈ Γ
with γz 6= z. In particular taking T0 ≥ sup{z ∈ Ω : 1

δ(z)
}, for any T ≥ T0 we have that

kT (z, γz) = 0 if γz 6= z. Hence for any T ≥ T0 we have∑
j

h(
tφj
T

)|φj(z)|2+
1

2π

∫
R
h(
t

T
)|E(z, 1

2
+ it)|2dt = |Γz|kT (0).

Since h(t) ≥ 0 is positive we can bound∑
tφj≤T

|φj(z)|2 ≤ 2|Γz|kT (0)

=
|Γz|
π

∫ ∞
0

h(
r

T
)r tanh(πr)dr � T 2.
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�

Corollary 2.9. For any compact set Ω ⊆ H2 and any ε > 0 there is a set A = AΩ,ε ⊆ N
satisfying that

(1) |A ∩ [T, 2T ]|= T (1 +O(T−ε))
(2) For any j ∈ A for any z ∈ Ω we have |φj(z)|≤ tεφj .

Once again, the lower bound we need for M2(φ) is known, this time having been proved
by Ghosh, Reznikov and Sarnak [GRS13].

Proposition 2.10 ([GRS13, Theorem 6.1]).

M2(φ) :=

(
1

b− a

∫ b

a

|φ(iy)|2 dy

)1/2

� 1

for any segment (a, b).

The final ingredient we need is an estimate for the L-function associated to the cusp for
φ, we now describe. Given a cusp for φ, we consider the Fourier expansion∑

n6=0

ρφ(n)y1/2Kitφ(2π |n| y)e(nx),

where K is the K-Bessel function. Furthermore, we let λφ(n) =
ρφ(n)

ρφ(1)
denote the eigenvalues

of the Hecke operators.
With the Fourier coefficients in hand we define the associated L-function

Lφ(s) :=
∞∑
n=1

λφ(n)

ns
.(2.11)

The following conjecture gives a mean square bound for this L-function.

Conjecture 2.12. Let φ be a Maass form with spectral parameter tφ. There exists a δ > 0
such that, for 2T ≤ tφ ≤ T 1+δ and every ε > 0, we have

1

T

∫ 2T

T

∣∣∣∣Lφ(
1

2
+ it)

∣∣∣∣2 dt� tεφ,(2.13)

as T →∞.

Such an estimate clearly follows from the Lindelöf hypothesis, and we note that for the
range 2T > tφ the estimate (2.13) is known (see [GRS13, Section 6.1]). While it is possible
that our range 2T ≤ tφ ≤ T 1+δ is also within reach of current technology we were not able
to establish it and thus leave it as an open conjecture.

3. Proof of Theorem 1.7

We start by proving Theorem 1.7. The proof for cusp forms is more or less identical; we
explain the major differences in §4. The proof for both is an application of Theorem 2.1
for which we require a lower bound on M2(·) (see Proposition 2.5) and an upper bound on
J(·).
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3.1. Upper bound on J. Rather than work with Et(z) it is more convenient to work with

ft(z) =
1
√
y
Et(z),

since y is bounded away from 0 and ∞, any statement about zeroes or nodal lines for ft
holds equally well for Et. Thanks to Theorem 2.1, our goal is now to bound

J(ft, η) :=
1

b− a

∫ b

a

∣∣∣∣∫ η

0

ft(i(y + v))dv

∣∣∣∣ dy.(3.1)

Proposition 3.2. Fix an interval (a, b) ⊂ R>0 for all 2
t
< η < 1 and t ≥ 10 sufficiently

large

J(ft, η)� η

(
log(t)9

√
ηt

+
log(t)7

tκ/2

)
+

(log(t))9

t
(3.3)

Proof. First, Fourier expand the Eisenstein series: [Iwa02, (3.20)]

E(z, s) = ys + ϕ(s)y1−s +
4
√
y

θ(s)

∞∑
n=1

ηs−1/2(n)Ks−1/2(2πny) cos(2πnx)

with θ(s) = π−sΓ(s)ζ(2s) and ϕ(s) = θ(1− s)θ(s)−1, and where

ηt(n) =
∑
ab=n

(a
b

)t
.

With that, we define the L-function

L(t, ν) =
∑
n≥1

ηit(n)

nν

It’s well-known that this L-function can be related to the Riemann zeta function:

L(t, ν) =
∑
n≥1

1

nν+it

∑
d|n

d2it

=
∑
d≥1

d2it
∑

n≡0 mod d

1

nν+it

=
∑
d≥1

d2it
∑
n≥1

1

nν+itdν+it
= ζ(ν + it)ζ(ν − it).(3.4)

Following [Ki23, Proof of Lemma 4.1] we can relate J(ft, η)2 to this L-function. Specifi-
cally, we can write

J(ft, η)2 =

(
1

b− a

∫ b

a

∣∣∣∣∫ η

0

ft(i(y + v))dv

∣∣∣∣ dy)2

�
(

1

b− a

∫ b

a

∣∣∣∣(y + η)1+it − y1+it

1 + it
+ ϕ(

1

2
+ it)

(y + η)1−it − y1−it

1− it

∣∣∣∣ dy)2

+

(
1

b− a

∫ b

a

∣∣∣∣∣
∫ η

0

[
4

θ(s)

∞∑
n=1

ηit(n)Kit(2πn(y + v))e(nx)

]
dv

∣∣∣∣∣ dy
)2

� 1

t2
+ J (t),
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where

J (t) =

(
1

b− a

∫ b

a

∣∣∣∣∣
∫ η

0

[
4

θ(s)

∞∑
n=1

ηit(n)Kit(2πn(y + v))e(nx)

]
dv

∣∣∣∣∣ dy
)2

.

From here we can expand the K-Bessel function [Olv76, (10.32.13)], that is,

Kit(z) =
(z/2)it

4πi

∫
(c)

Γ(ν)Γ(ν − it)
(z

2

)−2ν

dν,

and set c = 1/4, yielding

J (t)�
∫ b

a

∣∣∣∣∣
∫ η

0

∫
(1/4)

[
(y + v)−2ν+it

θ(1
2

+ it)
Γ(ν)Γ(ν − it)

∞∑
n=1

ηit(n) (πn)−2ν+it

]
dνdv

∣∣∣∣∣
2

dy

=

∫ b

a

∣∣∣∣∣
∫ η

0

∫
(1/4)

[
(y + v)−2ν

θ(1
2

+ it)
Γ(ν +

it

2
)Γ(ν − it

2
)
∞∑
n=1

ηit(n) (πn)−2ν

]
dνdv

∣∣∣∣∣
2

dy

�
∫ b

a

∫
(1/2)

|I(η, ν, y)γ(ν, t)L(t, ν)|2 dνdy

where γ(ν, t) =
Γ( ν+it

2
)Γ( ν−it

2
)

θ( 1
2

+it)
π−ν and I(η, y; ν) :=

∫ η
0

(y + v)−νdv. We now estimate the

inner integral. Write ν = 1/2 + ir, and using the invariance under r 7→ −r it is enough to
estimate the integral ∫ ∞

0

∣∣∣∣I(η, y,
1

2
+ ir)γ(

1

2
+ ir, t)L(t,

1

2
+ ir)

∣∣∣∣2 dr.

Noting that η < 1 and that the interval (a, b) is fixed, we can bound the integral, I by

I(η, y; 1
2

+ ir) =

∫ η

0

(y + v)−1/2e−i log(y+v)rdv � min(η,
1

|r|
).(3.5)

Using Stirling’s formula, the γ-factor can be bounded by

γ(
1

2
+ ir, t) =

Γ(1/2+ir+it
2

)Γ(1/2+ir−it
2

)

θ(1
2

+ it)
π−1−ir

� e−π|t+r|/4e−π|r−t|/4

e−πt/2ζ(1 + 2it)

1

((1 + |r − t|)(r + t))1/4

� (log(t))7 e−π|t+r|/4e−π|r−t|/4eπt/2

((1 + |r − t|)(1 + |r + t|))1/4
,

where we used the bound ζ(1 + 2it)� 1
log(t)7

(see [Tit51, (3.6.5)]).

First when r ≥ t we can bound

|I(η, y; 1
2

+ ir)γ(
1

2
+ ir, t)|2� log(t)14 e−π(r−t)

((1 + (r − t))(1 + (r + t))1/2r2
,

and using the convexity bound ζ(1
2

+ it)� t1/4 for the zeta function we can bound

|L(t,
1

2
+ ir)|2= |ζ(

1

2
+ i(t+ r))ζ(

1

2
+ i(r − t))|2� ((1 + (r − t))(1 + (r + t))1/2,
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hence in this range

|I(η, y; 1
2

+ ir)γ(
1

2
+ ir, t)|2 |L(t,

1

2
+ ir)|2 � t−2 log(t)14e−π(r−t),

and we can bound∫ ∞
t

∣∣∣∣I(η, y,
1

2
+ ir)γ(

1

2
+ ir, t)L(t,

1

2
+ ir)

∣∣∣∣2 dr � log(t)14

t2
.(3.6)

Next for the range r ≤ 1
η
≤ t

2
we can bound

|I(η, y; 1
2

+ ir)γ(
1

2
+ ir, t)|2� η2 log(t)14

t
,

to get∫ 1/η

0

∣∣∣∣I(η, y,
1

2
+ ir)γ(

1

2
+ ir, t)L(t,

1

2
+ ir)

∣∣∣∣2 dr � η2 log(t)14

t

∫ 1/η

0

|L(t,
1

2
+ ir)|2dr.

Now use Cauchy-Schwarz for the inner integral together with (2.7) to bound∫ 1/η

0

|L(t,
1

2
+ ir)|2dr � (

∫ 1/η

0

|ζ(
1

2
+ i(t− r))|4dr)

∫ 1/η

0

|ζ(
1

2
+ i(t+ r)|4dr)1/2

�
∫ t+1/η

t−1/η

|ζ(
1

2
+ ir)|4dt

� (t+ 1/η)P4(log(t+ 1/η)))− (t− 1/η)P4(log(t− 1/η)) +O(t1−κ)

� log(t)4

η
+ t1−κ

to conclude that∫ 1/η

0

∣∣∣∣I(η, y,
1

2
+ ir)γ(

1

2
+ ir, t)L(t,

1

2
+ ir)

∣∣∣∣2 dr � η2

(
log(t)18

ηt
+

log(t)14

tκ

)
.

Finally, in the range 1
η
≤ r ≤ t we first bound

|I(η, y; 1
2

+ ir)γ(
1

2
+ ir, t)|2� (log(t))14

r2((1 + (t− r))(1 + t+ r))1/2
,

hence∫ t

1/η

∣∣∣∣I(η, y,
1

2
+ ir)γ(

1

2
+ ir, t)L(t,

1

2
+ ir)

∣∣∣∣2 dr � (log(t))14

∫ t

1/η

|L(t, 1
2

+ ir)|2

r2((1 + (t− r))(1 + t+ r)))1/2
dr

� (log(t))14

√
t

∫ t−1/η

0

|L(t, 1
2

+ i(t− r))|2

(t− r)2(1 + r)1/2
dr.
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Split the integral into dyadic intervals to estimate∫ t−1/η

0

|L(t, 1
2

+ i(t− r))|2

(t− r)2(1 + r)1/2
dr � t−2

∫ 1

0

|L(t,
1

2
+ i(t− r))|2dr

+

log(t−1/η)∑
k=1

1

2k/2(t− 2k)2

∫ 2k

2k−1

|L(t,
1

2
+ i(t− r))|2dr

We can bound the first integral by∫ 1

0

|L(t,
1

2
+ i(t− r))|2dr =

∫ 1

0

|ζ(
1

2
+ ir)|2|ζ(

1

2
+ i(2t− r)|2dr

≤
(∫ 1

0

|ζ(
1

2
+ ir)|4dr

∫ 2t

2t−1

|ζ(
1

2
+ ir|4dr

)1/2

� t1/2(log t)2

and for each dyadic interval with A = 2k ≤ t we have∫ 2A

A

|L(t,
1

2
+ i(t− r))|2dr �

∫ 2A

A

|ζ(
1

2
+ i(2t− r)|2|ζ(

1

2
+ ir)|2dr

�
(∫ 2t−A

2t−2A

|ζ(
1

2
+ ir|4dr

∫ 2A

A

|ζ(
1

2
+ ir)|4dr

)1/2

� (A log4(t) + t1−κ)1/2(A log4(t))1/2 � log4(t)(A+ t
1−κ
2 A1/2).

Hence∫ t−1/η

0

|L(t, 1
2

+ i(t− r))|2

(t− r)2(1 + r)1/2
dr � t−3/2(log t)2 + (log(t))4

log(t−1/η)∑
k=1

2k/2 + t
1−κ
2

(t− 2k)2

� t−3/2 + (log t)4

∫ log(t−1/η)

1

2u/2 + t
1−κ
2

(t− 2u)2
du

� (log t)4

t3/2
,

and ∫ t

1/η

∣∣∣∣I(η, y,
1

2
+ ir)γ(

1

2
+ ir, t)L(t,

1

2
+ ir)

∣∣∣∣2 dr � (log(t))18

t2
.

Combining the three terms and integrating over the outer interval (a, b) we get that

J(ft, η)2 � η2

(
log(t)18

ηt
+

log(t)14

tκ

)
+

(log(t))18

t2
,

and taking a square root concludes the proof. �
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3.2. Proof of Theorem 1.7. First, by Proposition 2.5, there is a constant C1 such that

M2(ft) ≥ C1

uniform for all t. Let ω = 1
(b−a)

, N = t
(log t)2m

, and η = 1
N

. By Proposition 4.2, there is a

constant C2 so that

J(ft, η) ≤ C2 η

(
log(t)9−m +

log(t)7

tκ/2

)
Let a > 2. Then by Theorem 2.2, there exists a set Aβ,a ⊆ R with |Aβ,a ∩ [T, 2T ]|=
T (1 +O( 1

log(T )2a−4 )) so that that for any t ∈ Aβ,a we have that

sup
y∈[a,b]

|ft(iy)| ≤ log(t)a.

Hence for any t ∈ Aβ,a we can bound

M1(ft) ≥
M2(ft)

(log t)a
.

Let c = (log t)−a then M1(ft) ≥ cM2(ft). Assuming m > 9 + 3a, for all sufficiently large
t we can bound

J(ft, η) ≤ c3

16
ηM2(ft),

and hence by Theorem 2.1 we can conclude that

Nβ(ft) ≥
t

(log t)2(m+a)
.

And so the same statement holds for Et(iy).

3.3. Proof of Theorem 1.3. Assume we have an Lp bound Mp(ft) �ε t
ε and use Lp

interpolation to bound

M2(ft)
2 ≤M1(ft)

p−2
p−1Mp(ft)

p
p−1 .

This combined with the lower bound M2(ft)� 1 implies that there is a constant C1 = C1(ε)
so that

M1(ft) ≥ C1M2(ft)t
− εp
p−2 .

Let c = C1t
− pε
p−2 and η = 1

N
= tδ−1, so that c3ηM2(ft) ≥ C2ηt

− 3pε
p−2 . From the upper bound

J(ft, η) ≤ C5η log(t)9t−δ/2,

we see that J(ft, η) ≤ c3

16
ηM2(ft) as long as δ > 6pε

p−2
in which case Theorem 2.1 implies that

Kβ(ft) ≥ C3t
1−δ− κεε

p−2

for an appropriate constant C3 > 0. In particular, we see that for any κ > 8, for all
sufficiently large t we have that

Kβ(ft) ≥ t1−
κεε
p−2 ,

from which the claim follows.

4. Proof of Theorem 1.12

The proof for cusp forms follows along nearly identical lines. Once again, to apply
Theorem 2.1 we require a lower bound on M2(·) (see Proposition 2.10 and an upper bound
on J(·)).
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4.1. Upper bound on J. For the bound on J(φ, η) we again renormalize

f(z) =
1
√
y
φ(z).

Hence our goal is to bound

J(f, η) :=
1

b− a

∫ b

a

∣∣∣∣∫ η

0

f(i(y + v))dv

∣∣∣∣ dy,(4.1)

as follows.

Proposition 4.2. For any compact interval (a, b) ⊂ R>0 and η ∈ (2
t
, 1), for any ε > 0 we

have that

J(f, η)� η
tεφ√
ηtφ

+ tε−1.(4.3)

Proof. As for the Eisenstein series, we can again Fourier expand the Maass form,

f(iy) =
∑
n6=0

ρφ(n)Kitφ(2π |n| y),

with ρφ(n) = ρφ(1)λφ(n), and use the integral equation of the K-Bessel function to relate
J(f, η) to the L-function (2.11). That is, we have that

J(f, η)2 =

(
1

b− a

∫ b

a

∣∣∣∣∣
∫ η

0

[
ρφ(1)

∞∑
n=1

λφ(n)Kit(2πn(y + v))e(nx)

]
dv

∣∣∣∣∣ dy
)2

�
∫ b

a

∫
(1/2)

|I(η, y; ν)γ(ν, t)Lφ(ν)|2 dνdy

where γ(ν, t) = ρφ(1)Γ(ν+it
2

)Γ(ν−it
2

)π−ν and I(η, y; ν) :=
∫ η

0
(y+v)−νdv. We have the bound

(3.5) for I(η, y; 1
2

+ ir) as before and using the bound ρφ(1) � tεφe
πtφ
2 [GRS13, (14)], and

Stirling’s formula, we can similarly bound

γ(
1

2
+ ir, t)� tεφ

e−π|tφ+r|/4e−π|r−tφ|/4eπt/2

((1 + |r − tφ|)(1 + |r + tφ|))1/4
.

We can again reduce the inner integral to the range 0 < r < ∞ and split it into three
ranges ∫ ∞

0

∣∣∣∣I(η, y;
1

2
+ ir)γ(

1

2
+ ir, t)Lφ(

1

2
+ ir)

∣∣∣∣2 dr = I1/η
0 + Itφ1/η + I∞tφ .

For the last the range r ≥ tφ, we can use the convexity bound |Lφ(1
2

+ir)|� (1+r+tφ)1/4+ε

(see, e.g., [IS00]) to estimate

I∞tφ � tε−2
φ

∫ ∞
tφ

e−π(r−tφ)(1 + r + tφ)1/2+ε

((1 + |r − tφ|)(1 + |r + tφ|))1/2
dr

� tε−2
φ

∫ ∞
0

e−πr(1 + r + 2tφ)1/2+ε

(1 + r)(r + 2tφ|))1/2
dr � tε−2

φ .
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In the first range when r ≤ 1/η, we have that

I1/η
0 � tε−1

φ η2

∫ 1/η

0

|Lφ(
1

2
+ ir)|2dr

� η2
tεφ
ηtφ

.

Finally, for 1/η < t < tφ, split to dyadic intervals and apply Conjecture 2.12:

Itφ1/η � tεφ

∫ tφ

1/η

|Lφ(1
2

+ ir)|2

((r + tφ)(tφ − r))1/2r2
dr

� tεφ

log(tφ)∑
k=log(1/η)

1

((2k + tφ)(tφ − 2k))1/222k

∫ 2k

2k−1

|Lφ(
1

2
+ ir)|2dr

� t2εφ

log(tφ)∑
k=log(1/η)

1

((2k + tφ)(tφ − 2k))1/22k

� t2εφ

∫ log(tφ)

log(1/η)

1

((2u + tφ)(tφ − 2u))1/22u
du

� t2εφ

∫ tφ

1/η

1

((v + tφ)(tφ − v))1/2v2
dv

� t2ε−2
φ

∫ 1

1/ηt

1

((1 + v)(1− v))1/2v2
dv � t2ε−2

φ .

Integrating over (a, b) we see that

J(f, η)2 � η2
tεφ
ηtφ

+ tε−2
φ ,

and taking square roots concludes the proof. �

Proof of Theorem 1.12. As above, let fj(z) = y−1/2φj(z) and let tj = tφj . Fix ε > 0 and let

Aε = {j ∈ Z : supz∈β|fj(z)|} ≤ t
ε/16
j . By Corollary 2.9, we have that Aε is of full density.

Now for any j ∈ Aε, let cj = t
−ε/16
j , let Nj = t

1−ε/2
j , and fix ω = 1

|β| and ηj = N−1
j , so

that ηj =
Nj

ω(b−a)
. Since |fj(iy)|≤ cj for any y ∈ [a, b], we have that M1(fj) ≥ cjM2(fj). By

Proposition 2.5 there is an absolute constant C1 so that M2(fj) ≥ C1. Let ε′ < ε/16; then
by Proposition 4.2, there is a constant C2 > 0 so that

J(fj, ηj) ≤ C2ηjt
ε′−ε/4
j ≤

c3
j

16
ηjM2(fj),

when tj is sufficiently large. Hence by Theorem 2.1, we have that

Nβ(fj) ≥
c2
jNj

10(ω + 2)
≥ t1−εj ,

as claimed. �
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