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Abstract

In this paper we consider the fractional parts of a general sequence, for example the sequence α
√
n or

αn2. We give a general method, which allows one to show that long-range correlations (correlations
where the support of the test function grows as we consider more points) are Poissonian. We show
that these statements about convergence can be reduced to bounds on associated Weyl sums. In
particular we apply this methodology to the aforementioned examples. In so doing, we recover a
recent result of Technau-Walker (2020) for the triple correlation of αn2 and generalize the result
to higher moments. For both of the aforementioned sequences this is one of the only results which
indicates the pseudo-random nature of the higher level (m ≥ 3) correlations.
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1 Introduction

Let {a(n)}n∈N be a sequence in R. For a long time, mathematicians have studied the distribution of

the fractional parts of such sequences. That is, the sequence {xn}n∈N given by

xn := a(n) (mod 1).

In general, it is fairly well-understood which sequences are uniformly distributed on the interval (see

[KN74]). However, uniform distribution is a relatively crude measure of pseudo-randomness. Recently,

there has been a lot of interest in the fine-scale local statistics of such sequences. Namely, a central

question is to understand when the distribution of gaps between neighboring points in these sequences

converges to the exponential function, as they do for uniformly distributed random variables on the

interval.

This problem is fundamental from a mathematical point of view in understanding the random nature

of deterministic sequences. Furthermore, it also has implications in physics. Since such sequences can

be used to understand the energy levels of quantum systems, understanding their distribution has

numerous implications. For example, the sequence a(n) = αn2 for α 6= 0 corresponds to the eigenvalues

of a boxed harmonic oscillator. In general, the well-known Berry-Tabor [BT77] states that for generic

surfaces, if the Hamiltonian dynamics on the surface are integrable, then the gap distribution for

the spectrum has a well-defined limit, given by the exponential distribution. There exist counter-

examples to this statement which can be explained away (thus the word generic), however in general

this relationship has been confirmed by experiment. But very little can be rigorously proved. For more

information see the review [Mar00].

*Rutgers University
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1.1 Long-Range Correlations

In general the gap distribution is very hard to work with directly. This owes to the fact that neighboring

points are not necessarily consecutive points in the sequence. To get around this problem, we instead

consider the m-level correlations: Given a sequence {xn}n∈N ⊂ [0, 1), and a vector j ∈ Zm, let ∆(j) ∈
Rm−1 denote the difference vector

∆(j) :=
(
xj1 − xj2 , xj2 − xj3 , . . . , xjm−1

− xjm
)
.

Then for f ∈ C∞
c (Rm−1) we define the m-level correlation to be

R(m)(N, f) :=
1

N

∗∑

j∈{1,...,N}m

f(N(∆(j))), (1.1)

where the notation
∗∑

indicates that all entries of the vector j are distinct. We say that the m-level

correlation is Poissonian if

R(m)(N, f) →
∫

Rm−1

f(x)dx (1.2)

in the limit as N → ∞. And we say the sequence is Poissonian if all the correlations for m ≥ 2 are

Poissonian. By the method of moments, it can be shown that if a sequence is Poissonian then the

gap distribution is exponential. Therefore it is common to study the correlations rather than the gap

distribution itself.

That said, it remains a very difficult problem to show that a given sequence is Poissonian. While

there are exceptions (e.g Rudnick-Zaharescu showed that almost every dilate of a lacunary sequence is

Poissonian [RZ02]), there are very few results in the area. For example, if a sequence grows with a power

law, then very little is known (especially when considering higher power correlations (m ≥ 3)). Rather

than study the correlations, in this paper we consider a coarser measure – the long-range correlations:

fix τ ∈ (0, 1)

R(m)(N, f, τ ) :=
1

N

∗∑

j∈{1,...,N}m

f(Nτ (∆(j))). (1.3)

Hence, in comparison with the standard correlations, we are increasing the support of the function f

as N → ∞. For uniformly distributed random variables on the interval one would expect:

R(m)(N, f, τ ) = N(m−1)(1−τ)
(∫

Rm−1

f(x)dx+ o(1)

)
. (1.4)

In this paper, we give a general method to show that (for particular values of τ > 0) these long-range

correlations converge to this limit, and thus coincide with the Poissonian limit. We show that these

long-range correlations can be expressed in terms of the Poissonian limit (1.4) and an error which can

be written in terms of Weyl sums. Then if we can appropriately bound these Weyl sums we can show

that the error is small.

It should be noted that if the discrepancy of a sequence goes to 0 fast enough, then one can prove

that the long-range correlations converge to the Poissonian limit for τ < 1
2 − ǫ for all ǫ > 0 (see [TW20]

for details on this relation). The methodology in this paper, when applied to our examples, will improve

on this ’näıve’ bound.
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1.2 Moments

The long-range correlations are the most natural object to work with from a mathematical point of

view. However from a intuitive point of view one can also consider the following random variable:

WL,N = WL,N(Y ) := #{n ≤ N : xn ∈ [Y, Y + L/N ] mod 1}. (1.5)

That is, we consider the number of points in a randomly placed interval of size L
N . Using a standard

technique (see [TW20]) one can prove the following proposition

Proposition 1. Fix a sequence {xn}n∈N and a moment m ≥ 2. Then for a given τ < 1, suppose that

for all f ∈ C∞
c (Rm−1) we have

R(m)(N, f, τ ) = N(m−1)(1−τ)
(∫

Rm−1

f(x)dx+ o(1)

)

as N → ∞. Then

E
(
Wm

N,L

)
= Lm(1 + o(1)), (1.6)

as N → ∞, where L = N1−τ .

In words, this shows that, if we can show that the m-level long-range correlation converges to the

Poissonian limit, then we can show that the mth moment of WN,L is (to leading order) Lm, as is the

case for uniformly distributed random variables.

1.3 Specific Examples

In Section 2 we explain the general methodology for proving convergence as in (1.3) however, prior to

this we give two applications to well-studied sequences.

1.3.1 The Sequence a(n) = αn2

If we consider a(n) = αn2, then the gaps between the sequence xn are related to the gaps in the energy

levels of the “boxed oscillator”, owing to this fact, and the sequence’s importance mathematically, this

case has been extensively studied [RS98, RSZ01, HB10]. In particular Rudnick and Sarnak showed

that there is a set of α of full Lebesgue measure for which the pair correlation (m = 2) is Poissonian.

However very little is known about higher level correlations.

We say α ∈ R is Diophantine if, for every ǫ > 0 there is a c = c(α) > 0 such that
∣∣∣∣α− p

q

∣∣∣∣ >
c

q2+ǫ (1.7)

for all integers p, q. Our first result, shows that for α Diophantine and for τ lying in a particular range,

the long-range correlations for a(n) = αn2 are Poissonian:

Theorem 2. Let a(n) = αn2 for α Diophantine, fix m ≥ 2 and ǫ > 0, then if 0 < τ ≤ m
2m−2 − ǫ the

long-range m-level correlation is Poissonian. Namely:

R(m)(N, f, τ ) = N(m−1)(1−τ)
(∫

Rm−1

f(x)dx+ o(1)

)
, (1.8)

as N → ∞.

By Dirichlet’s approximation theorem, the set of Diophantine α has full Lebesgue measure.

3



Theorem 2 has a number of implications. First of all, for m = 3 this recovers a Theorem proved by

Technau and Walker [TW20]. Namely that the long-range correlations are Poissonian for τ < 3
4 − ǫ.

In addition, for m ≥ 4 this is the first result proving convergence of long-range correlations that goes

beyond the discrepancy bound of τ = 1
2 − ǫ.

Interestingly, our result holds for all Diophantine α. In [RS98], Rudnick and Sarnak give an example

of a Diophantine α for which the (not long-range) correlations are not Poissonian. Theorem 2 thus

shows that for such examples, the non-Poissonian behavior happens on a very fine scale which is o(N−τ ).

1.3.2 The Sequence a(n) = α
√
n

A second sequence of particular interest is the sequence a(n) = α
√
n. If we consider a(n) = αnβ for

0 < β < 1, then it is expected that for β 6= 1/2, the gap statistics converge to the exponential distri-

bution. In contrast, in a surprising paper, Elkies and McMullen [EM04] used homogeneous dynamics

methods to show that if α2 ∈ Q and we consider a(n) = α
√
n, then the gap distribution converges to

an explicit distribution which is not the exponential. Moreover they conjectured that for α2 6∈ Q the

gap distribution is exponential. Also surprisingly El-Baz-Marklof-Vinogradov [EBMV15] showed that

for α = 1 the pair correlation is Poissonian. Therefore, in short, β = 1/2 is a surprising, special case

exhibiting unusual behavior.

Theorem 3. Let a(n) = α
√
n for any α ∈ R∗, fix any ǫ > 0. Take τ ≤ 3m

6m−4 − ǫ. Then

R(m)(N, f, τ ) = N(m−1)(1−τ)
(∫

R

f(x)dx+ o(1)

)
, (1.9)

as N → ∞.

Note that Theorem 3 holds for any α ∈ R∗. Thus for m = 2, (1.9) agrees with [EBMV15], while for

m ≥ 3, (1.9) states that on this long-range scale all the correlations converge to the Poissonian limit,

regardless of the value of α. Therefore, this shows that the structure observed by Elkies-McMullen

occurs on a very fine scale and isn’t apparent on these long-range scales.

Notation: To avoid confusion, fix the following notation, let f(n) = O(g(n)) if limn→∞ |f(n)/g(n)| < ∞,

and f(n) = o(g(n)) if limn→∞ |f(n)/g(n)| = 0. Equivalently let f(n) ≪ g(n) denote f(n) = O(g(n)).

For x ∈ R let {x} denote the fractional part of x, and we let ‖x‖ denote the distance to the nearest

integer. Given a set A we denote A
∗ := A \ {0}. Finally, as usual e(z) := e2πiz.

2 Methodology

To achieve the convergence in (1.4) we first use discrete Fourier analysis, to show that the long-range

m-level correlation can be written as a main term and a remainder which can be written as a product

of Weyl sums. Then, for each example we use bounds on the associated Weyl sums to show that the

remainder is sufficiently small. For y ∈ Rm, write

β(y) = (β1(y), . . . , βm−1(y)) (2.1)

where βi(y) := a(yi+1)− a(yi). Thus

R(m)(N, f, τ ) =
1

N

∗∑

y∈{1,...,N}m

∑

k∈Zm−1

f(Nτ (β(y) + k)). (2.2)
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Now apply Poisson summation to the sum over k to give:

R(m)(N, f, τ ) =
1

N

∗∑

y∈{1,...,N}m

∑

k∈Zm−1

e(k · β(y))
∫

Rm−1

f(Nτ
x)e(x · k)dx. (2.3)

Now we isolate the term k = 0 which gives us our main term:

R(m)(N, f, τ ) = N(1−τ)(m−1)
(∫

f(x)dx+ o(1)

)
+ E (2.4)

where the o(1)-error comes from the fact that the yi are taken to be distinct and

E :=
1

N

∗∑

y∈{1,...,N}m

∑

06=k∈Zm−1

e(k · β(y))
∫

Rm−1

f(Nτ
x)e(x · k)dx.

Thus our goal in the remainder of the paper is to show that E = o
(
N(1−τ)(m−1)

)
. To achieve this

bound let M = Nτ+ǫ′ for some ǫ′ > 0 which we fix later, then we can use the fast decay of Fourier

coefficients to show:

E =
1

N

∗∑

y∈{1,...,N}m

∑

06=k∈Z
m−1

|ki|<M

e(k · β(y))
∫

Rm−1

f(Nτ
x)e(x · k)dx+ o(1)

≪ 1

N1+τ(m−1)

∑

06=k∈Z
m−1

|ki|<M

∣∣∣∣∣∣

∗∑

y∈{1,...,N}m

e(k · β(y))

∣∣∣∣∣∣
+ o(1).

For notation set k0 = km = 0, then we can change variables and write:

E ≪ 1

N1+τ(m−1)

∑

06=k∈Z
m−1

|ki|<M

∣∣∣∣∣∣

∗∑

y∈{1,...,N}m

m∏

i=1

e(a(yi)(ki−1 − ki))

∣∣∣∣∣∣
+ o

(
N(m−1)(1−τ)

)

=
1

N1+τ(m−1)

∑

06=k∈Z
m−1

|ki|<2M

∣∣∣∣∣∣

∗∑

y∈{1,...,N}m

e(a(ym)d(k))

m−1∏

i=1

e(a(yi)ki)

∣∣∣∣∣∣
+ o

(
N(m−1)(1−τ)

)

where d(k) = −k1 − k2 − · · · − km−1.

If we were considering the full correlations (τ = 1), then the diagonal terms yi = yj (i 6= j) would

be of the same size as the main term. However since we work with τ < 1, the diagonal terms are in

fact negligible. Thus we can add them back into the sum. To that end, we use the inclusion-exclusion

principle to write

∗∑

y∈{1,...,N}m

=
∑

y∈{1,...,N}m

−
(2)∑

y∈{1,...,N}m

where the (2) above sum signifies that at least 2 terms in the sum must be equal. By symmetry:
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1

N1+τ(m−1)

∑

06=k∈Z
m−1

|ki|<2M

∣∣∣∣∣∣

(2)∑

y∈{1,...,N}m

e(a(ym)d(k))
m−1∏

i=1

e(a(yi)ki)

∣∣∣∣∣∣

≪ M2

N1+τ(m−1)

∑

k∈Z
m−3

|ki|<2M

∣∣∣∣∣∣

∑

y∈{1,...,N}m−2

e(a(ym−2)d(k))

m−1−2∏

i=1

e(a(yi)ki)

∣∣∣∣∣∣

≪ M2

N1+τ(m−1)

∑

06=k∈Z
m−3

|ki|<2M

∣∣∣∣∣∣

∑

y∈{1,...,N}m−j

e(a(ym−2)d(k))

m−3∏

i=1

e(a(yi)ki)

∣∣∣∣∣∣
+

M2

N1+τ(m−1)
Nm−2

(2.5)

If we write:

Em :=
1

N1+τ(m−1)

∑

06=k∈Z
m−1

|ki|<2M

∣∣∣∣∣∣

∑

y∈{1,...,N}m

e(a(ym)d(k))

m−1∏

i=1

e(a(yi)ki)

∣∣∣∣∣∣

Then we have shown that, for τ < 1

E ≪ Em +
M

Nτ Em−1 + o
(
N(m−1)(1−τ)

)
. (2.6)

Now we write

S(N, k) :=

N∑

y=1

e(ka(y)).

In this case

Em ≪ 1

N1+τ(m−1)

∑

06=k∈Z
m−1

|ki|<2M

|S(N, d(k))|
m−1∏

i=1

|S(N, ki)| (2.7)

Thus we get the following theorem:

Theorem 4. Let τ < 1, then for m ≥ 2:

Em
N(m−1)(1−τ)

≪ 1

Nm

∑

06=k∈Z
m−1

|ki|<2M

|S(N, d(k))|
m−1∏

i=1

|S(N, ki)| . (2.8)

In what remains, we use Theorem 4 to show that (under the hypotheses stated in the main theorems

of the introduction) Em = o(1). Thus, since the range of τ decreases with m, we can use an inductive

argument to prove our main theorems.

Remark. Unfortunately Theorem 4, as it is stated, is not powerful enough to handle the case τ = 1

(i.e the standard correlations). The reason for this is that in that case the diagonal terms are of

leading order. Therefore, to use the same approach would require a precise asymptotic for the Weyl

sums S(N, k). These kinds of precise asymptotics are rare in the field. Most likely, to handle the full

correlations would require a multi-dimensional analysis as is used in [TW20].
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3 Proof of Theorem 2

The proof of Theorem 2 is more-or-less a straightforward application of Theorem 4 andWeyl differencing

(see e.g [Dav05, Lemma 3.1]). Namely, as was shown in [RS98, Corollary 5] for α Diophantine, we have,

for any δ > 0:

∑

1≤k≤M

|S(k,N)|2 ≪ M1+δN1+δ (3.1)

∑

1≤k≤M

|S(k,N)| ≪ M1+δN1/2+δ . (3.2)

Therefore if we consider the r.h.s in Theorem 4: since k 6= 0, we can assume k1 6= 0:

1

Nm

∑

06=k∈Z
m−1

|ki|<2M

|S(N, d(k))|
m−1∏

i=1

|S(N, ki)| ≪
1

Nm

∑

k′∈Z
m−2

|ki|<2M

m−1∏

i=2

|S(N, ki)|
M∑

k1=1

|S(N, k1)| |S(N, d(k))|

where k′ = (y2, . . . , ym−1). First we handle the term d(k) = 0. Note that setting d(k) = 0, fixes the

value of k1 = d(k′) = −k2 − k3 − · · · − km−1. Moreover, we know that k1 > 0, thus (applying the trivial

bound S(N, 0) = N),

1

Nm

∑

k′∈Z
m−2

|ki|<2M

m−1∏

i=2

|S(N, ki)|
M∑

k1=1

|S(N, k1)| |S(N, 0)| = 1

Nm

∑

06=k′∈Z
m−2

|ki|<2M

∣∣S(N, d(k′)
∣∣ |S(N, 0)|

m−1∏

i=2

|S(N, ki)|

=
1

Nm−1

∑

06=k′∈Z
m−2

|ki|<2M

∣∣S(N, d(k′))
∣∣
m−1∏

i=2

|S(N, ki)|

=
1

Nm−1

∑

06=k′∈Z
m−2

|ki|<2M

∣∣S(N, d(k′))
∣∣
m−1∏

i=2

|S(N, 0)|

Thus we can use an inductive argument to bound the d(k) = 0 term (i.e this is the same as the right

hand side in Theorem 4 for Em−1). For the other term, we apply Cauchy Schwarz to the sum over k1

giving:

1

Nm

∑

06=k∈Z
m−1

|ki|<2M
d(k) 6=0

|S(N, d(k))|
m−1∏

i=1

|S(N, ki)| ≪
1

Nm

∑

k′∈Z
m−2

|ki|<2M

m−1∏

i=2

|S(N, ki)|
(

M∑

k=1

|S(N, k)|2
mM∑

k=1

|S(N, k)|2
)1/2

,

where we have used the fact that 0 < |d(k)| ≤ mM for any value of k1. Now we can use (3.1) on the

final bracket, and for each of the remaining ki-sums we use (3.2) and the trivial bound S(N, 0) = N .

Thus

1

Nm

∑

06=k∈Z
m−1

|ki|<2M

|S(N, d(k))|
m−1∏

i=1

|S(N, ki)| ≪
1

Nm

(
N +M1+δN1/2+δ

)m−2 (
M1+δN1+δ

)

≪ 1

NmM (1+δ)(m−1)Nm(1/2+δ) +
M1+δNδ

N

≪ Mm−1+δ′

Nm/2
+

M1+δNδ

N
.

(3.3)
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Recall, we want to show Em

N(m−1)(1−τ) = o (1). Therefore, provided M = N
m

2m−2−ǫ, for some ǫ >

δ′
(

m
2(m−1)(m−1+δ′)

)
, then the l.h.s of (3.3) is o(1). Inserting this bound into (2.8) and using (2.6)

proves Theorem 2.

4 Proof of Theorem 3

For the proof of Theorem 3, we have not found any suitable bounds on Weyl sums in the literature.

Fortunately we can use the established theory of exponential sums to prove the following:

Theorem 5. Let 0 < |k| ≤ CM for any constant C < ∞, then as N → ∞:

S(N, k) ≪ k1/2N1/4 +
N3/4

k1/2
log(N). (4.1)

With that, Theorem 3 follows almost immediately from (2.8). First, note that: for any fixed

constant C > 0

∑

0<|ki|<CM

|S(N, k)|2 ≪ M2N1/2 +N3/2 log(N)2 +NM log(N) (4.2)

∑

0<|ki|<CM

|S(N, k)| ≪ M3/2N1/4 +N3/4M1/2 log(N) (4.3)

as N → ∞.

Just as we did in Section 3, we note that if d(k) = 0 then k1 = −k2 − · · · − km−1 = d(k′). Thus

1

Nm

∑

06=k∈Z
m−1

|ki|<2M

|S(N, d(k))|
m−1∏

i=1

|S(N, ki)| ≪
1

Nm

∑

k′∈Z
m−2

|ki|<2M

m−1∏

i=2

|S(N, ki)|
2M∑

k1=1

|S(N, k1)| |S(N, d(k))| ,

≪ 1

Nm

∑

k′∈Z
m−2

|ki|<2M

m−1∏

i=2

|S(N, ki)|
2M∑

k1=1
d(k) 6=0

|S(N, k1)| |S(N, d(k))|

+
1

Nm−1

∑

06=k′∈Z
m−2

|ki|<2M

m−1∏

i=2

|S(N, ki)|
∣∣S(N, d(k′)

∣∣ .

Thus (as before), we can use an inductive argument on m to show that the latter term in the last line

is sufficiently small. For the former term we apply Cauchy-Schwarz to get

1

Nm

∑

k′∈Z
m−2

|ki|<2M

m−1∏

i=2

|S(N, ki)|
2M∑

k1=1
d(k) 6=0

|S(N, k1)| |S(N, d(k))| ≪ 1

Nm

∑

k′∈Z
m−2

|ki|<2M

m−1∏

i=2

|S(N, ki)|
mM∑

k1=1

|S(N, k1)|2

≪ 1

Nm

(
M3/2N1/4

)m−2 (
N1/2M2

)

≪ 1

N
3m
4

M
3m−2

2

(we have assumed here that τ ≥ 1
2 ). Now inserting M = Nτ and recalling that we want Em

N(m−1)(1−τ) =

o (1), this implies:
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3m− 2

2
τ − 3m

4
< 0 =⇒ τ <

3m

2(3m− 2)

as in Theorem 3.

5 Exponential Sum Bounds

This section is devoted to the proof of Theorem 5, which is based on Van der Corput’s B-Process – see

[Mon94, Chapter 3] for an excellent reference. However, for our problem, the range of the sum [1, N ] is

very large. As a consequence we do not have good control on the derivatives of the exponent. Hence

we need to prove the stationary phase integrals rather than cite a known reference. Then we will use

some classical analytic tools to control the various terms which arise. For simplicity of notation we

assume k > 0. Then to achieve the same bounds for negative k take complex conjugates.

5.1 Analytic Tools

For a real-valued function g(x) defined on [A,B] we define:

V (g) := max
(A,B)

|g(x)|+ t.v(g(x)), (5.1)

where t.v(g(x)) :=
∫B
A

∣∣g′(x)
∣∣ dx. For a proof of the following classical lemma see [Hux96, Lemma 5.1.4]

Lemma 6 (Van der Corput’s kth Derivative Test). Let f(x) be real and k times differentiable on (A,B)

with f (r)(x) ≥ µ > 0 on (A,B). Let g(x) be a real valued function. Then:

∣∣∣∣∣

∫ B

A
g(x)e(f(x))dx

∣∣∣∣∣≪
V (g)

µ1/r
. (5.2)

5.1.1 Stationary Phase Integrals

If kα
2
√
N

≤ r ≤ kα
2 , then the function hk,r(x) = kα

√
x− rx has a stationary point, γk,r =

(
kα
2r

)2
∈ (1, N)

where h′k,r(γk,r) = 0. In that case the following is an application of classical stationary phase estimates

(see for example [Hux96, Lemma 5.5.2]):

Proposition 7 (Stationary Phase Integral). Let r, k ∈ Z be integers such that, k ∈ {1, 2, . . . , N} and
kα

2
√
N

≤ r < kα
2 . Then in the limit as N → ∞:

∫ N

1
e
(
hk,r(x)

)
dx = e

(
(kα)2

4r
+

1

8

) γ
3/4
k,r

k1/2
+O

(
1

h′k,r(1)
+

1

h′k,r(N)

)
+O

(
N1/4

k3/2
+

N1/2

k2

)
. (5.3)

Proof. For this proof we will suppress the subscripts k, r whenever they appear. To prove (5.3) we fix

two constants 0 < c1 < 1 < c2 < ∞ independent of N and fix u := c1γ and v := c2γ. Now we consider

the three integrals on (1, u), (u, v), and (v,N) separately.

Step 1: To address the integral on (1, u), apply integration by parts, to give:

∫ u

1
e(h(x))dx =

[
e(h(x))

2πih′(x)

]u

x=1

+
1

2πi

∫ u

1

h′′(x)e(h(x))
h′(x)2

dx (5.4)

9



Now if u < 1, then the term of the right is O
(

1
h′(1)

)
. If not, then r <

kα
√
c1

2 . Thus, applying the

first integral test gives:

∫ u

1
e(h(x))dx =

[
e(h(x))

2πih′(x)

]u

x=1

+O
(
V

(
h′′(x)
h′(x)2

)(
min

∣∣h′(x)
∣∣)−1

)
(5.5)

Now note that on (1, u), the derivative
∣∣h′(x)

∣∣ ≥ C k
γ1/2 where the constant C = α

(
1√
c1

− 1
)
. Thus

∫ u

1
e(h(x))dx =

[
e(h(x))

2πih′(x)

]u

x=1

+O
(
γ1/2

k

[
h′′(x)
h′(x)2

]u

1

)

=

[
e(h(x))

2πih′(x)

]u

x=1

+O
(
γ1/2

k

(
k

(kα− r)2
+

1

γ1/2k

))

=

[
e(h(x))

2πih′(x)

]u

x=1

+O
(
N1/2

k2
+

1

k2

)
.

(5.6)

Step 2: The proof for (v,N) is similar: First we use the first derivative test (Lemma 6) to show:
∫ N

v
e(h(x))dx =

[
e(h(x))

2πih′(x)

]N

x=v

+
1

2πi

∫ q

v

h′′(x)e(h(x))
h′(x)2

dx

=

[
e(h(x))

2πih′(x)

]N

x=v

+O




V
(
h′′(x)/h′(x)2

)

min |h′(x)|




Moreover, evaluating V gives:

V
(
h′′(x)/h′(x)2

)

min |h′(x)| = O
(

1

k2

)
. (5.7)

Therefore:

∫ N

v
e(h(x))dx =

[
e(h(x))

2πih′(x)

]N

x=v

+O
(

1

k2

)
. (5.8)

Step 3: Working in [u, v], set T = kαγ1/2 and M = γ. Then for j = 2, 3, 4, there exist constants 0 < Cj < ∞
such that

∣∣∣h(j)(x)
∣∣∣ ≤ Cj

T

Mj
, h′′(x) ≥ h′′(v) ≥ C−1

2
T

M2

Thus we can apply a classical stationary phase integral [Hux96, Lemma 5.5.2] to say:

∫ v

u
h(x)dx =

e(h(γ) + 1/8)√
h′′(γ)

+
e(h(v))

2πih′(v)
− e(h(u))

2πih′(u)
+O

(
M

T 3/2
+

M4

T 2

(
1

γ

)3
)

=
e(h(γ) + 1/8)√

h′′(γ)
+

e(h(v))

2πih′(v)
− e(h(u))

2πih′(u)
+O

(
γ

k3/2γ3/4
+

γ3

k2
1

γ3

)

=
e(h(γ) + 1/8)√

h′′(γ)
+

e(h(v))

2πih′(v)
− e(h(u))

2πih′(u)
+O

(
γ1/4

k3/2
+

1

k2

)
.

(5.9)

(5.3), now follows directly from this bound together with (5.6) and (5.8).
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5.2 Proof of Theorem 5

Our goal is to estimate

S = S(N, k) =
∑

y∈{1,...,N}
e (kα

√
y) .

Step 1: First, apply the truncated Poisson summation formula [Hux96, Lemma 5.4.3]: For A := kα
2
√
N

and

B := kα
2 :

S =
∑

A− 1
4<r<B+ 1

4

∫ N

1
e
(
kα

√
x− rx

)
dx+O(log(N)).

First note that if r = 0 then
∫N
1 e (kα

√
x) dx ≪ N1/2

k by the first derivative test. Thus, if we set

Ã = min (1, ⌈A− 1/4⌉) and B̃ := ⌊B + 1/4⌋, and apply Proposition 7 and Lemma 6 (2nd derivative

test) then we have the bound:

S =
∑

Ã≤r≤B̃



e

(
(kα)2

4r
+

1

8

) γ
3/4
k,r

k1/2
+O

(
min

{
1

h′k,r(1)
,
N3/4

k1/2

}
+min

{
1

h′k,r(N)
,
N3/4

k1/2

})



+O
(
N1/2

k
+

N1/4

k1/2
+ log(N)

)
.

(5.10)

We have used the fact that there are order k terms in the sum over r to pull two of the error

terms out of the sum (and the resulting error is O(k1/2)).

Step 2: The latter two terms in the sum can both be controlled in the same way:

∑

Ã≤r≤B̃

min

{
1

h′k,r(1)
,
N3/4

k1/2

}
≪

∣∣∣∣∣∣

∑

Ã≤r≤B̃

min

{
1

kα
2 − r

,
N3/4

k1/2

}∣∣∣∣∣∣

≪ log(N) + min

{
1

‖kα
2 ‖

,
N3/4

k1/2

}
.

(5.11)

The same bound holds for the term involving h′k,r(N). Thus:

S =
∑

Ã≤r≤B̃

e

(
(kα)2

4r
+

1

8

) γ
3/4
k,r

k1/2
+O

(
N3/4

k1/2
+

N1/2

k
+ log(N)

)
. (5.12)

Step 3: Inserting the definition of γk,r, the remaining term can be written:

E := k
∑

Ã<r<B̃

e

(
(kα)2

4r

)
1

r3/2
,

≤ k
∑

Ã<r<B̃

1

r3/2

≪ k
1

Ã1/2
≪ N1/4k1/2.

(5.13)
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