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Microscopic approach to nonlinear reaction-diffusion: The case of morphogen gradient formation
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We develop a microscopic theory for reaction-diffusion (RD) processes based on a generalization of Einstein’s
master equation [Ann. Phys. 17, 549 (1905)] with a reactive term and show how the mean-field formulation leads
to a generalized RD equation with nonclassical solutions. For the nth-order annihilation reaction A + A + A +
· · · + A → 0, we obtain a nonlinear reaction-diffusion equation for which we discuss scaling and nonscaling
formulations. We find steady states with solutions either exhibiting long-range power-law behavior showing the
relative dominance of subdiffusion over reaction effects in constrained systems or, conversely, solutions that go
to zero a finite distance from the source, i.e., having finite support of the concentration distribution, describing
situations in which diffusion is slow and extinction is fast. Theoretical results are compared with experimental
data for morphogen gradient formation.
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I. INTRODUCTION

The random walk is the classical paradigm for the
microscopic mechanism underlying diffusive processes as
demonstrated by Einstein [1], who showed how the diffusion
equation follows from the mean-field formulation of the micro-
scopic random walk. Here we generalize the formulation for
situations in which the diffusing particles are also subjected to a
reactive process. From the phenomenological viewpoint, when
diffusion and reaction are both present, these processes are
described by reaction-diffusion (RD) equations. For instance,
for the evanescence process A → 0 of suspended particles
diffusing in a nonreactive medium, the concentration of species
A, c(r; t), is described by the classical RD equation

∂

∂t
c(r; t) = D

∂2

∂r2
c(r; t) − kc(r; t), (1)

where D denotes the diffusion coefficient and k is the reaction
(evanescence) rate. This classical equation yields a steady-state
solution showing spatial exponential decay of the concentra-
tion (but one can equally consider the distribution function)
c(r) = c(0)exp(−√

k/D|r|) when particles are injected with a
constant flux at r = 0.

However, there are many systems observed in nature where
it seems logical to use the language of reaction-diffusion
processes, but where nonclassical distributions are found, i.e.,
the steady-state spatial distributions are nonexponential, e.g.,
when the particles encounter obstacles or are retarded in their
diffusive motion, or because the reactive process is hindered
or enhanced by concentration effects. Such situations are
ubiquitous in chemical, rheological, biological, etc., systems—
a typical example being the diffusion and degradation of a
morphogen in cells during the early developing stage [2]—
and are certainly as commonly observed as those that can
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be described by the idealized RD system of Eq. (1). This
is why approaches to a more general description of RD
phenomena have been proposed and recent developments
in this direction [3–5] are based on (i) a generalization of
the diffusive mechanism accounting for time-delay effects or
obstacles hindrance using the continuous-time random-walk
(CTRW) model and corresponding to a fractional Fokker-
Planck equation or the fractional Brownian motion and (ii) a
space and time dependence of the reaction rate [k → k(r; t)].
However, the resulting expressions for the steady-state dis-
tribution have so far been subject to controversial comments
expressing that “CTRW theory is compatible with available
experiment” [6] and “fractional Brownian motion is the
underlying process” [7] or “experimental results cannot be
explained by a continuous-time random walk” [8] and “exclude
fractional Brownian motion as a valid description” [9]. So the
present state of the art certainly appears somewhat confusing,
while it nevertheless seems clear that a general RD theory
requires a generalization for both reaction and diffusion.

Here we present an alternative approach by developing a
microscopic theory generalizing Einstein’s master equation
with a reactive term and show how the mean-field formulation
leads to the nonlinear RD equation with nonclassical solutions.
For the nth-order annihilation reaction A + A + A + · · · +
A → 0, we obtain the nonlinear reaction-diffusion equation
(with no drift)

∂

∂t
c(r; t) = ∂

∂r
D

∂

∂r
cα(r; t) − kcn(r; t), (2)

for which we discuss scaling and nonscaling formulations and
the corresponding range of values of the nonlinear exponents.
In particular, the appearance of powers of the concentration
on the right-hand side of this equation is not assumed a priori
but rather is shown to arise from the requirement that the
equation give diffusive, i.e., scaling, solutions. We obtain
steady-state solutions of the form c(r) = c(0)(1 + Cr/ν)−ν ,
where ν = 2

n−α
and C is a constant (for fixed α and n),

giving long-range power-law behavior (for n > α) showing
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the relative dominance of subdiffusion over reaction effects
in constrained systems or, conversely (for n < α < n + 1),
leading to concentrations c(r) that go to zero for values of r

beyond some threshold, i.e., having finite support, describing
the situation where diffusion is slow and extinction is fast.
An experimental example of morphogen gradient formation is
discussed.

II. GENERALIZED MASTER EQUATION

We consider a diffusive process where particles are
subject to annihilation. Using the microscopic approach of
Einstein’s random-walk model, we take, for simplicity, a
one-dimensional lattice where the particle hops to the nearest-
neighbor site (left or right) in one time step and can then also be
annihilated by some reactive process. The formal expression
describing the diffusive motion combined with the annihilation
process is given by the discrete equation1

n∗(r; t + 1) = ξ−n∗(r + 1; t−) + ξ+n∗(r − 1; t−)

− ξRn∗(r; t+), (3)

where the Boolean variable n∗(r; t) = {0,1} denotes the
occupation at time t of the site located at position r and ξ±
is a Boolean random variable controlling the particle jump
between neighboring sites (ξ+ + ξ− = 1), while ξR is the
reactive Boolean operator controlling particle annihilation.
The mean-field description follows by ensemble averaging
Eq. (3) with 〈n∗(r; t)〉 = n(r; t), 〈ξ±〉 = Pi , and 〈ξR〉 = Ri ,
where i is an index for the position. Using the statistical
independence of ξ and n∗ and extending the possible jump
steps over the whole lattice, we obtain

n(r; t + δt) =
+∞∑

j=−∞
Pj (r − jδr; t)n(r − jδr; t)

−R(r; t)n(r; t), (4)

where Pj (r − jδr) denotes the probability of a jump of j sites
from site r − jδr and R(r) is the annihilation probability at
site r; the number density is n(r; t), so n(r; t)dr is the number
of particles one expects to find in the interval [r − dr/2,r +
dr/2]. Note that in a closed system, i.e., without the second
term on the right-hand side, the total number of particles N is
constant, so one can divide through by this number to express
the master equation in terms of f (r,t) = n(r,t)/N , the prob-
ability density. Alternatively, if the system contains multiple
components, then a more useful concept is the concentration.
For example, if there are two components, one of which is the
solvent and the other the solute, then the solute concentration
would be c(r,t) = n(r,t)/[n(r,t) + ns(r,t)], where ns(r,t) is
the local number density for the solvent. In the common case
that the solvent is uniform and stationary ns(r,t) = ns and
the solute is relatively dilute ns � n(r,t), one has, to first
approximation, c(r,t) = n(r,t)/ns , which is what we will use
in the following.

1Equation (3) without the third term on the right-hand side is the
formal expression of Einstein’s random-walk microscopic model.

In the classical case, the jump probabilities are constants
Pj (r − jδr; t) = pj � 0, with

∑∞
j=−∞ pj = 1, as is the re-

action probability R(r; t) = pR , with 1 � pR � 0. We take
into account the configurational complexity of the reactive
medium by allowing for the possibility that both the jump
probabilities and the reaction probability are modified by
the interaction between the particles. This is modeled by
writing Pj (r − jδr; t) = pjF [c(r − jδr; t)], with j 	= 0 and
R(r; t) = pRG[c(r; t)], giving the generalized master equation

c(r; t + δt) − c(r; t)

=
+∞∑

j=−∞
{pjF [c(r − jδr; t)][c(r − jδr; t) − c(r; t)]}

−pRG[c(r; t)]c(r; t). (5)

Notice that in order to retain their nature as probabilities, the
functions F (c) and G(c) must both be greater than zero and
less than one for all values of their arguments.

III. DIFFUSION AND REACTION

A. Generalized diffusion equation

Considering the diffusive process alone, it was shown [10]
that the generalized diffusion equation that follows from
Eq. (5) (without the second term on the right-hand side) is

∂c

∂t
+ C

∂

∂r
[xF (x,x)]c

= D
∂

∂r

(
∂xF (x,y)

∂x
− ∂xF (x,y)

∂y

)
c

∂c

∂r
+ C2δt

2

∂

∂r

×
[
∂xF (x,y)

∂x
− ∂xF (x,y)

∂y
−

(
∂xF (x,x)

∂x

)2 ]
c

∂c

∂r
,

(6)

with the compact notation (· · · )c = (· · · )x=c(r,t),y=c(r,t).
Here C = (

∑
j jpj ) δr

δt
is the advection speed and D =

(
∑

j j 2pj ) (δr)2

2δt
is the diffusion coefficient. In Ref. [10] it was

also shown that the existence of a scaling solution c(r; t) =
t−γ /2φ(r/tγ /2) demands that F (c) ∼ cη, in which case the
scaling exponent is γ = 2

2+η
. Since the jump probabilities

Pj = pjF (c) must be less than or equal to 1, one must have
η > 0, that is, γ < 1, which is the signature of subdiffusion.2

We now combine the description of subdiffusion [with no drift,
i.e., C = 0 in Eq. (6)] with reactive processes.

B. Scaling reaction diffusion

Starting from the generalized master equation (5), we
proceed along the lines of derivation of the generalized
diffusion equation given in Ref. [10]. Performing a multiple-
scale expansion up to second order, we obtain the general

2For η = 0, one has γ = 1, i.e., classical diffusion. The case of
superdiffusion is not presented here.
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form of the RD equation (with no drift and with reaction rate
k = pR

1
δt

)

∂

∂t
c(r; t) = D

∂2

∂r2
[F (c(r; t))c(r; t)] − kG(c(r; t))c(r; t). (7)

As for the generalized diffusion equation [10], we ask
under which conditions there is a scaling solution to Eq. (7)
of the form c(r; t) = t−γ /2φ(r/tγ /2) = t−γ /2φ(x). Expressing
the time and space derivatives in terms of x, Eq. (7) can be
written as

−γ
d

dx
xφ(x) = 2Dt1−γ d2

dx2
F (t−γ /2φ(x))φ(x)

− ktG(t−γ /2φ(x))φ(x). (8)

The time dependence on the right-hand side can be elim-
inated only if F (c) and G(c) have a functional power-
law form: F (c) = cα−1 = t (1−α)γ /2φα−1 and G(c) = cn−1 =
t (1−n)γ /2φn−1 for some numbers α � 1 and n � 1. Hence we
must have 1 = t1−γ t (1−α)γ /2 and t t (1−n)γ /2, that is,

γ = 2

α + 1
, n − 1 = 2

γ
. (9)

Thus, according to scaling consistency, the exponents should
be such that n = α + 2. When α > 1, we have anomalous
diffusion: 〈r2〉 ∼ t2/(α+1) (and more generally 〈rm〉 ∼ tm/(α+1))
and the reaction term goes like ∼ −kφn. More explicitly,
using in Eq. (8) the reduced variable

ζ = xk−γ /2

√
k

D
, (10)

we obtain the scaled equation

d2

dζ 2
φα(ζ ) + 1

α + 1

d

dζ
[ζφ(ζ )] − φn(ζ ) = 0, (11)

which can be rewritten in terms of the original variables
(r and t) to give

∂

∂t
c(r; t) = ∂

∂r
D

∂

∂r
cα(r; t) − kcn(r; t). (12)

Note that the power-law forms of the diffusion term and
the reaction term are not introduced as an ansatz but follow
from the power-law forms of F (c) and G(c) and so are a
consequence of the scaling requirement. Without the reactive
term, i.e., with k = 0, this reduces to our previous generalized
diffusion equation in the absence of drift [10]. Equation (12)
is the generalized reaction-diffusion equation.

IV. STEADY-STATE DISTRIBUTIONS

In this section we explore Eq. (12) as a natural extension
of our previous description of generalized diffusion to include
extinction. Because we are not interested solely in scaling
solutions in this case, we will allow for arbitrary exponents
α � 1 and n > 0.

A. Boundary conditions

One frequently studied problem is that of a semi-infinite
system with constant injection of particles at the boundary. To

be specific, we use the interval [0,∞] and note that the rate of
change of the total number of particles is simply

dN(t)

dt
= ns

∫ ∞

0

∂c(r; t)

∂t
dr = Dns

∂cα(r; t)

∂r

∣∣∣∣
r→∞

−Dns

∂cα(r; t)

∂r

∣∣∣∣
r=0

− kns

∫ ∞

0
cn(r; t)dr. (13)

The first term on the right-hand side is the rate at which matter
leaves the system via the boundary at infinity: We will assume
that the concentration goes to zero sufficiently fast at infinity
so that this term is zero—an assumption that will have to be
checked a posteriori. The second term on the right-hand side
is the rate at which particles are injected at the left boundary
and the last term is the rate at which particles are removed
by the extinction process. Our boundary condition will be to
control the rate at which particles are injected, so we set(

dN(t)

dt

)
in

≡ j0 = −Dns

∂cα(r; t)

∂r

∣∣∣∣
r=0

(14)

as the boundary condition of interest.

B. Steady-state solution

We now seek a steady-state solution with this boundary
condition,

0 = D
∂2

∂r2
cα(r) − kcn(r), − Dns

∂cα(r)

∂r

∣∣∣∣
r=0

= j0. (15)

It is convenient to rewrite the problem with the change of
variables

r → z =
√

k

D
r, j0 → j ∗

0 = j0

ns

√
kD

, c → g = cα,

(16)

so that the steady-state equation has the simple form

∂2

∂z2
g(z) = gn/α(z),

∂g (z)

∂z

∣∣∣∣
z=0

= −j ∗
0 . (17)

This is integrated to get

dg(z)

dz
= ±

√
A + 2α

α + n
g(α+n)/α(z). (18)

Recall that we assumed that the flux at infinity goes to zero.
This means that either A = 0 and limz→∞ g(z) = 0 or A < 0
and limz→∞ g(z) is finite. We rule out the latter case on
the grounds that without extinction we should get purely
diffusive behavior and that adding extinction should not cause
an increase in particles far from the source.

A second integration then gives the implicit solution

±z =
∫ z

0

dg√
2α

α+n
g(α+n)/α

=
√

α + n

2α

2α

α − n

× [g(α−n)/2α (z) − g(α−n)/2α(0)] (19)

or, upon rearrangement,

g(z) = g(0)

(
1 ± g−(α−n)/2α(0)

α − n

2α

√
2α

α + n
z

)2α/(α−n)

. (20)
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The boundary condition is

j ∗
0 = − dg

dz

∣∣∣∣
z=0

= ∓
√

2α

α + n
g(α+n)/2α(0). (21)

Since we are interested in the circumstance that the injection
rate is positive, we must take the lower sign so that

g(z) =
(

j ∗
0

√
α + n

2α

)2α/(α+n) (
1 − α − n

2

z

z0

)2α/(α−n)

,

z0 = αj
∗[(α−n)/(α+n)]
0

(
α + n

2α

)α/(n+α)

, (22)

or, rewriting the result in terms of the physical variables,

c(r) =
(

j ∗
0

√
α + n

2α

)2/(α+n) (
1 − α − n

2

r

r0

)2/(α−n)

,

r0 = αj
∗[(α−n)/(α+n)]
0

(
α + n

2α

)α/(n+α)
√

D

k
. (23)

There are two cases that must be distinguished depending on
whether n > α or α > n. In the first case the solution has
infinite support and is a simple algebraic decay

c(r) =
(

j ∗
0

√
α + n

2α

)2/(α+n) (
1 + n − α

2

r

r0

)−2/(n−α)

,

n > α. (24)

The second, more complicated case occurs when α > n. Then
it is clear from Eq. (23) that the concentration will, in general,
become imaginary and in all cases its magnitude will increase
without bound for sufficiently large r . The only way to avoid
this unphysical behavior is if the solution has finite support so
that

c(r) =
(

j ∗
0

√
α + n

2α

)2/(α+n) (
1 − α − n

2

r

r0

)2/(α−n)

�

(
2

α − n
r0 − r

)
, α > n, (25)

where the step function �(x) = 1 for x > 0 and zero other-
wise. Noting that

d

dx
f (x)�(x) = f ′(x)�(x) + f (0)δ(x),

d2

dx2
f (x)�(x) = f ′′(x)�(x) + f ′(0)δ(x) + f (0)δ′(x),

it is clear that Eq. (25) can be an acceptable solution to the
steady-state equation (15) only if the first two derivatives
of the coefficient of the step function vanish at r = 2r0

α−n
.

This simply imposes the requirement on the exponent that
2α

α−n
− 2 > 0, which is always true provided that n > 0, as

was already required. Thus the final, physically valid solution
with finite support (25) is restricted to a range of values of the
coefficients α > n > 0. It should be noted that the occurrence
of distributions with finite support have also been reported in
different contexts, indicating that their appearance is related
to generalized diffusion [11].

FIG. 1. (Color online) Steady state: c(r)/c(0) = exp(−r/r0)
[q = 1, middle (black) curve] and c(r)/c(0) = {1 + [(n − α)/2]
(r/r0)}−2/(n−α) for n = α + 2 [infinite support, q = 2, top (red) curve]
and α = n + 0.8 [finite support, q = 0.6, bottom (blue) curve].

We note that the solutions (24) and (25) can be expressed
as q-exponentials eq(x) = [1 + (1 − q)x]1/(1−q)�(1 + (1 −
q)x), with the identification q = n−α

2 + 1 and that q > 1
gives the case of infinite support and 1 > q gives the case
of finite support. From the properties of the q-exponentials
we know that for q = 1 the decay of the concentration will
be exponential, c(r) = (j ∗

0 )1/αe−r/r0 with r0 = α
√

D/k. This
of course includes the steady-state solution of the classical
reaction-diffusion equation with α = n = 1.

The physical interpretation of these results can be un-
derstood as follows. Increasing n decreases the extinction
rate (since the reaction term goes like cn and c < 1), while
increasing α decreases the rate of diffusion [this is easily
seen from the scaling r ∼ tγ /2 or by writing the diffusion
term as ∂

∂r
D ∂cα

∂r
= ∂

∂r
(αDcα−1) ∂c

∂r
, so the effective diffusion

coefficient goes like cα−1]. Hence, making n large or α small
leads to infinite support: Diffusion is fast, extinction is slow.
The converse, making n small or α large, leads to finite support
because diffusion is slow and extinction is fast. The resulting
steady-state profiles are compared in Fig. 1.

C. Robustness of the steady state

The question of robustness is an important issue as
discussed by Eldar et al. [12] and Yuste et al. [4] in partic-
ular for morphogen gradient formation as precursor to cell
differentiation. Robustness is a measure of the strength of the
steady-state profile versus changes in the variables controlling
input flux and degradation, such as j0 and k. The cited authors
characterized it as the quantity Rb = d |∂L/∂ lnb|−1, where
d is a characteristic microscopic length (e.g., the cell size),
b denotes j0 or k, and L is the distance at which the steady
state c(r) takes a given value and is obtained by inversion
of the steady-state solution c(r)r=L. A high value of Rb is
an indication of the buffering capacity against changes in the
input flux and degradation rate. Here, however, we prefer to
consider directly the relative change in the concentration at
point r due to a change in the value of quantity b, thereby
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defining the (position-dependent) sensitivity to parameter b as

Sb(r) = ∂ lnc(r)

∂ lnb
. (26)

For n > α, the case of infinite support, a short calculation
gives the sensitivity as

Sj0 (r) = 2

α + n

1

1 + n−α
2

r
r0

, n � α, (27)

and for n = α = 1, i.e., in the classical case of exponential
decay, this becomes

Sj0 (r) = 1, n = α = 1, (28)

which we will take as a reference point. One also gets
exponential decay for the more general condition n = α (see
Sec. IV B), but in this case we find

Sj0 (r) = 1

n
, n = α, (29)

so that even though the decay is exponential, it is nevertheless
true that increasing the nonlinearity of the process decreases
the sensitivity of the concentration to variations in the
injection rate. Note that the general result for infinite support
is bounded by

Sj0 (r) � 2

α + n
, n � α, (30)

so that, independent of position, increasing nonlinearity in
either the diffusion process or the extinction process has the
effect of buffering the concentration against changes in the
rate at which material is injected.

The case of finite support α < n is more complicated. A
simple calculation gives

Sj0 (r) = 1

1 − α−n
2

r
r0

2

α + n
, α > n, (31)

so that there are two effects at work: decreasing sensitivity with
increasing nonlinearity, as above, and increasing sensitivity

with increasing distance from the source. In fact, in this case
we find

Sj0 (r) > 1 ⇐⇒ r > r∗ ≡ 2

α − n

(
1 − 2

α + n

)
r0. (32)

Clearly, this is only relevant if the right-hand side is less than
r0. For n < 1, this is always the case, i.e., there is always a
region of enhanced sensitivity in the range r∗ < r < r0. For
n > 1, there is a region of enhanced sensitivity for

α > α∗ ≡ 1 +
√

(n − 1)(n + 3)

= n + 2 − 2

n
+ · · · , α > n > 1. (33)

Only for the restricted range α∗ > α > n > 1 is there no region
of enhanced sensitivity for the case of finite support.

In summary, we find that (i) for infinite support n � α,
increasing nonlinearity always decreases sensitivity of the
concentration to the injection rate; (ii) the same holds true
for the case of finite support when α∗ > α > n > 1; and (iii)
the case of finite support will, for n < 1 or α > α∗, show
enhanced sensitivity in the region r∗ < r < r0.

V. COMPARISON TO SIMULATION AND EXPERIMENT

A. Numerical solution of master equation

We have performed numerical computation of the master
equation (5) in order to verify three aspects of this theory:
first, that the nonlinear dynamics eventually leads to a steady
state; second, that the steady state is independent of the initial
conditions; and third, that our analytic, continuum result is a
good representation of the steady state. Figure 2 shows the
result of solving the master equation with an initial condition
c(r) = 0 and with constant flux at the origin for two cases:
one with finite support n < α and one with infinite support
n > α. In both cases, we do indeed find that at long times
the system settles into a steady state that is well described
by the analytic results (24) and (25). Note that, in the case
of infinite support, one must go to somewhat longer times to

FIG. 2. (Color online) Numerical and analytical solutions for the steady-state profile. (a) Finite support. Numerical solution of the master
equation (5), where pjF = pjc

α−1
j (with pj = 0.2 for j ∈ [−2, + 2] and α = 1.5) and G = pRcn (with n = 1 and pR = 10−3) for t =

50, 200, 500, 800, 1.5 × 103, 2 × 103, and 1.5 × 104 time steps (symbols), and the analytical steady-state solution (25) [solid (black) curve].
The boundary condition is finite flux at r = 0 and the initial condition is zero concentration everywhere.(b) Infinite support. Same as (a) except
n = 2 and pR = 10−2 for t = 50, 200, 500, 103, 2 × 103, 4 × 103, 104, and 1 × 105 time steps (symbols) and the steady-state solution (24)
[solid (black) curve]. Note that there are no adjustable parameters in either case.
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FIG. 3. (Color online) Numerical and analytical solutions for the finite support profile (n < α) with a boundary condition of fixed c(0).
(a) Numerical solution of the master equation (5), where pjF = pjc

α−1
j (with pj = 0.2 for j = [−2, + 2] and α = 1.5) and G = pRcn (with

n = 1 and pR = 10−3) for t = 3 × 102, 6 × 102, 8 × 102, 1.2 × 103, and 6 × 103 time steps. (b) Comparison between numerical solution of
the master equation (5) for t = 6 × 103 time steps (open circles) and the analytical steady-state solution (25) (solid curve). Note that there are
no adjustable parameters.

reach the steady state. To test the sensitivity of the steady state
to the boundary conditions, the calculations were repeated
with a boundary condition of fixed value of the concentration
at r = 0. The result for the case of finite support is shown in
Fig. 3, where it is again shown that the system reaches a steady
state and that the steady state is that of the continuum theory.
Similar results were found for the case of infinite support. This
comparison of numerical and analytical results therefore shows
good agreement between the continuum approximation and
the discrete microscopic dynamics and furthermore provides
evidence that the steady state is unique.

FIG. 4. (Color online) Experimental data (black dots) from Han
et al. (Fig. 6.A in Ref. [13]) from the fluorescence intensity of
the Wg protein (vertical axis, normalized values) versus distance
(horizontal axis, in a.u.) measured from the anterior-posterior axis
along the dorsoventral direction in the posterior compartment of the
Drosophila wild-type wing disc [13]. The solid curve is the best fit of
the theoretical steady state (24) with n − α � 3.8. For comparison,
the dashed curve shows the best-fit exponential profile.

B. Comparison to experiment

As an application of the theory we compare our analyt-
ical solution for the steady state with experimental results
obtained from measurements performed in the Drosophila
wing disc where morphogens are produced by a subset of cells
wherefrom they diffuse and are degraded thereby forming a
concentration gradient whose profile shape appears crucial for
subsequent cell specification [12]. This situation appears to
be one to which our theoretical analysis could be applicable.
Experimental results given in Ref. [13] present the intensity
signal of the Wg morphogen as a function of distance from
the source obtained by image processing showing the profile
of the diffusing protein in selected regions of the Drosophila
wing disk. In the absence of numerical data, we processed
the signal images to obtain the data shown in Figs. 4 and 5,
where they are compared to our analytical results. Clearly,
we find that the subdiffusive nonlinear reactive steady-state
profile (24) with infinite support reproduces very well the
experimental data, indicating slow degradation combined with
extended subdiffusion. In all cases, we also show best fits to an
exponent of the form f (z) = Ae(−B|z|) and it is clear that the
experimental data are very poorly fit by an exponential decay.

VI. CONCLUSION

We derived the nonlinear reaction-diffusion equation start-
ing from Einstein’s microscopic model where the diffusing
particles are also subject to an annihilation reactive process.
The nonlinear reaction-diffusion equation was obtained under
the demand that scaling be satisfied for diffusive motion
wherefrom a relation follows between the scaling exponent
and the nonlinear exponents whose range of possible values
exhibits the signature of subdiffusion. While full scaling
should in principle be satisfied for the space-time-dependent
equation, this requirement can be relaxed between the reaction
term exponent and the scaling exponent for the steady-state
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FIG. 5. (Color online) Same as Fig. 4 but for experimental data (black dots) from Han et al. (Fig. 6.B in Ref. [13]) for a mutant strain.
The solid curve is the fit of theoretical steady state (24) to the experimental data; because of the obvious asymmetry of the data along the
dorsoventral axis, (a) shows a fit based only on the data for negative distances, giving n − α � 1.7, and (b) shows a fit to data for positive
distances, giving n − α � 3.3. In both cases, a best fit to an exponential decay is shown as the dashed curve.

equation. This observation is important for the analysis of the
RD steady-state solutions, which take the form of a power law
with in one case infinite support and in the other case finite
support.

We discussed the sensitivity of the steady state versus
changes in the input flux and found that profiles with infinite
support show minimal sensitivity and such profiles with
infinite support were shown to correspond to experimental
observations. We also showed that profiles with finite support,
in contrast, should exhibit stronger sensitivity to input flux
changes and it seems that such profiles with finite support

have not been observed in morphogen gradient formation.
This observation may suggest that extreme sensitivity excludes
this type of profile in natural morphogen gradient formation
because degradation is too fast with respect to diffusion
to establish the necessary gradient for subsequent cell
differentiation.

ACKNOWLEDGMENT

This work was supported in part by the European Space
Agency under Contract No. ESA AO-2004-070.

[1] A. Einstein, Ann. Phys. 17, 549 (1905).
[2] O. Wartlick, A. Kicheva, and M. Gonzalez-Gaitan, Cold Spring

Harb. Perspect. Biol. 1, a001255 (2009).
[3] E. Abad, S. B. Yuste, and K. Lindenberg, Phys. Rev. E 81,

031115 (2010).
[4] S. B. Yuste, E. Abad, and K. Lindenberg, Phys. Rev. E 82,

061123 (2010), and references therein.
[5] Sergei Fedotov, Phys. Rev. E 83, 021110 (2011).
[6] Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev. Lett. 101,

058101 (2008).
[7] M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Phys. Rev.

Lett. 103, 180602 (2009).

[8] J. Szymanski and M. Weiss, Phys. Rev. Lett. 103, 038102
(2009).

[9] M. R. Horton, F. Hofling, J. O. Radler, and T. Franosch, Soft
Matter 6, 2648 (2010).

[10] J. F. Lutsko and J. P. Boon, Phys. Rev. E 77, 051103
(2008).

[11] J. D. Murray, Mathematical Biology, 3rd ed. (Springer, Berlin,
2002); see Section 11.3.

[12] A. Eldar, D. Rosin, B.-Z. Shilo, and N. Barkai, Dev. Cell 5, 635
(2003).

[13] C. Han, D. Yan, T. Y. Belenkaya, and X. Lin, Development 132,
667 (2005).

021126-7

http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1101/cshperspect.a001255
http://dx.doi.org/10.1101/cshperspect.a001255
http://dx.doi.org/10.1103/PhysRevE.81.031115
http://dx.doi.org/10.1103/PhysRevE.81.031115
http://dx.doi.org/10.1103/PhysRevE.82.061123
http://dx.doi.org/10.1103/PhysRevE.82.061123
http://dx.doi.org/10.1103/PhysRevE.83.021110
http://dx.doi.org/10.1103/PhysRevLett.101.058101
http://dx.doi.org/10.1103/PhysRevLett.101.058101
http://dx.doi.org/10.1103/PhysRevLett.103.180602
http://dx.doi.org/10.1103/PhysRevLett.103.180602
http://dx.doi.org/10.1103/PhysRevLett.103.038102
http://dx.doi.org/10.1103/PhysRevLett.103.038102
http://dx.doi.org/10.1039/b924149c
http://dx.doi.org/10.1039/b924149c
http://dx.doi.org/10.1103/PhysRevE.77.051103
http://dx.doi.org/10.1103/PhysRevE.77.051103
http://dx.doi.org/10.1016/S1534-5807(03)00292-2
http://dx.doi.org/10.1016/S1534-5807(03)00292-2
http://dx.doi.org/10.1242/dev.01636
http://dx.doi.org/10.1242/dev.01636

