Publications

Preprints:

   14. Hyperbolic lattice point counting in unbounded rank, w/ V. Blomer, (2023), [ArXiv], [pdf].

   13. Mean square of Eisenstein series, w/ D. Kelmer, and A. Kontorovich (2023), [ArXiv], [pdf].

   12. An abstract spectral approach to horospherical equidistribution (2022), [ArXiv], [pdf].

   11. Full poissonian local statistics of slowly growing sequences w/ N. Technau (2022), [ArXiv], [pdf].

   10. Effective counting in sphere packings w/ A. Kontorovich, (2022) [ArXiv], [pdf].

   9. $m$-Point correlations of the fractional parts of $\alpha n^\theta$ w/ N. Technau, (2021) [ArXiv], [pdf].

Publications:

   8. Sarnak’s spectral gap question w/ D. Kelmer, and A. Kontorovich (2022) (Accepted for publication: Journal d’Analyse Mathematique )., [ArXiv], [pdf].

   7. Pair correlation of the fractional parts of $\alpha n^\theta$ w/ A. Sourmelidis, and N. Technau (2021) (Under revision: Journal of the European Mathematical Society ) [ArXiv], [pdf].

   6. Long-range correlations of sequences modulo 1 Journal of Number Theory, 234, 333-348 , (2022) [Link], [ArXiv], [pdf].

   5. Farey sequences for thin groups. International Mathematics Research Notices, 15, 11642-11689 , (2020) [Link], [ArXiv], [pdf].

   4. Invariance principle for the random wind-tree process w/ B. Tóth, Annales Henri Poincaré, 22(10), 3357-3389 (2021) [Link],[ArXiv], [pdf].

   3. Directions in orbits of geometrically finite hyperbolic subgroups. Mathematical Proceedings of the Cambridge Phil. Soc. 171 (2), 277-316 (2020) [Link], [ArXiv], [pdf].

   2. Invariance principle for the random Lorentz gas—beyond the Boltzmann-Grad limit w/ B. Tóth, Communications in Mathematical Physics, 379 , 589–632 (2020) [Link], [ArXiv], [pdf].

   1. Microscopic approach to nonlinear reaction-diffusion: The case of morphogen gradient formation. w/ J. P. Boon, and J. F. Lutsko, Phys. Rev. E, 85 , 021126 (2012) [Link], [ArXiv], [pdf].

PhD Thesis:

Statistical properties of dynamical systems: from statistical mechanics to hyperbolic geometry University of Bristol , (2020), [Link], [pdf].

Conference Proceedings:

  1. Invariance principle for random Lorentz gas in the Boltzmann-Grad Limit, Oberwolfach Report 10/2019 p. 33-35 (2019).
  2. Invariance principle for random Lorentz gas — Beyond the Boltzmann-Grad Limit, Oberwolfach Report 42/2019 p. 12-15 (2019)