1. Pair Correlation of the Fractional Parts of $\alpha n^\theta$ w/ A. Sourmelidis, and N. Technau, (2021)[ArXiv], [pdf].


  1. Long-range correlations of sequences modulo 1 Journal of Number Theory (To Appear) , (2021) [ArXiv], [pdf].
  2. Farey sequences for thin groups. International Mathematics Research Notices (Available Online), (2020) [Link], [ArXiv], [pdf].
  3. Invariance principle for the random wind-tree process w/ B. Tóth, Annales Henri Poincaré, 22(10), 3357-3389 (2021) [Link],[ArXiv], [pdf].
  4. Directions in orbits of geometrically finite hyperbolic subgroups. Mathematical Proceedings of the Cambridge Phil. Soc. 171 (2), 277-316 (2020) [Link], [ArXiv], [pdf].
  5. Invariance Principle for the Random Lorentz Gas—Beyond the Boltzmann-Grad Limit w/ B. Tóth, Communications in Mathematical Physics, 379 , 589–632 (2020) [Link], [ArXiv], [pdf].
  6. Microscopic approach to nonlinear reaction-diffusion: The case of morphogen gradient formation. w/ J. P. Boon, and J. F. Lutsko, Phys. Rev. E, 85 , 021126 (2012) [Link], [ArXiv], [pdf].

PhD Thesis:

Statistical properties of dynamical systems: from statistical mechanics to hyperbolic geometry University of Bristol , (2020), [Link], [pdf].

Conference Proceedings:

  1. Invariance principle for random Lorentz gas in the Boltzmann-Grad Limit, Oberwolfach Report 10/2019 p. 33-35 (2019).
  2. Invariance principle for random Lorentz gas — Beyond the Boltzmann-Grad Limit, Oberwolfach Report 42/2019 p. 12-15 (2019)